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Abstract:

Understanding the blood flow in the retina of the eye may provide insights
into several eye pathologies and ultimately lead to better treatments. We
model the flow as a hierarchical Darcy flow on a curved surface and solve
the model numerically using discrete exterior calculus and finite element
exterior calculus. Results support the hypothesis that changes in the
shape of the retina cause significant changes in the ocular blood flow,
which may play a role in the dynamics of open angle glaucoma.
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The Eye

I The eye is the organ of sight: the sensory part is the retina.
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Goals

I Advance the theory: most accurate models become theory

I Help reason: simplified models help us think more clearly

I Simulate experiments: experiments may be hard, or even impossible

I Competing goals: tension between simplicity and accuracy

I Solution: a collection of models at various levels of refinement

Modeling the Eye: Goals and Motivation 5



Motivation

I Preserve the vision

I Window into the body

I Part of the brain

I Opportunity to study flow on curved surfaces
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Fundus Images

I A healthy right eye (left) and a healthy left eye (right)
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Regions of Particular Clinical Interest in the Retina

i

I optic nerve head (ONH)

I inferior quadrant (I)

I superior quadrant (S)

I nasal quadrant (N)

I temporal quadrant (T)

I fovea

I At the level of capillaries and small arterioles and venules, we don’t
see the details of the vascular tree architecture

I The tissue appears to be a porous medium
I Think of the vascular tree as a hierarchical structure
I Parameterize these hierarchical levels by a continuous parameter ϑ
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Hierarchical Darcy Flow

I Consider averaged (smeared) quantities at position x in some spatial
domain Ω for each hierarchy level ϑ

– Velocity v(x, ϑ)
– Hierarchical velocity ω(x, ϑ)
– Pressure p(x, ϑ)

I Model each ϑ level by Darcy flow equations and couple ”vertically”
with hierarchical flow

∇ · (nbv) +
∂

∂ϑ
(nbω) = 0 x∈Ω, ϑ∈(0,1)

nbv = −K∇p x∈Ω, ϑ∈(0,1)

nbω = −α∂p
∂ϑ

x∈Ω, ϑ∈(0,1)
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Parameters and Boundary Conditions

I Parameters
– Tissue porosity nb(x, ϑ)
– Tissue perfusion nbω
– Tissue permeability tensor K(x, ϑ)
– Hierarchical permeability α(x, ϑ)
– Hydraulic conductivities Gv, Ga
– Venous and arterial pressures pv(x) and pa(x)

I Boundary conditions

nbω(x, 0) = −Gv (p(x, 0)− pv(x)) x∈Ω

nbω(x, 1) = −Ga (pa(x)− p(x, 1)) x∈Ω

nbv(x, ϑ) · n = 0 x∈∂Ω, ϑ∈ [0,1]

I Couple to feeding arteries and draining veins

Gv = αvδv(x) and Ga = αaδa(x)

I αv and αa are venous and arterial conductances
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Vascular Tree Architecture

I δv(x) and δa(x) are delta functions which differ from zero only
where the feeding arteries and draining veins are located, respectively

I Need to extract feeding arteries and draining veins from fundus
images

I Alternatively, model the vascular tree

I Young (1808): Compare parent and daughters vessels

– Assume two identical daughters

– Radius ratio:
rp
rd

= 2
1
3 = 1.26

– Area ratio:
Ap

Ad
= 2−

1
3

I Murray (1926): Generalize to asymmetric trees

– Similar to Pythagora, except cubes: r3p =
∑
r3d

– Derives from optimality (variational principle)

I Forgotten for many years, then ”rediscovered”
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Optimal Transport =⇒ Murray’s Law

I Pf power needed to maintain the blood flow (viscous losses)
I Pm power needed to metabolically maintain the blood and the vessel
I Pt = Pf + Pm total power
I Minimize Pt!
I Assume cylindrical vessels: f = cp

– f is volumetric flow rate
– p is pressure difference
– c is conductance coefficient

I Assume Poiseuille flow: c = πr4

8µl
– µ is blood viscosity
– l is vessel length

I Min Pf = pf = af2r−4 =⇒ r →∞?
– a = 8µl

π

I Min Pm = mV = mπr2l = br2 =⇒ r → 0?
– m is a metabolic coefficient
– b = mπl

I Min Pt =⇒ dPt

dr = 0 =⇒ −4af2r−5 + 2br = 0 =⇒ f = kr3!

– k = ( b
2a
)1/2
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Recent Experimental Data and Models

I Takahashi (2009, 2013): f = krm

– Theory (Murray): m = 3
– Data (Takahashi 2009): m ≈ 2.85
– Data (Takahashi 2013): significant deviations in m between various

organs

I In addition to radius, interested in length and angle

– Theory: open problem!
– Data: rather scarce - open problem!
– Model (Takahashi 2009): L = 7.4r1.15

I Open question: what optimality?
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Hierarchical Discretization

I Standard FE procedure
I Rewrite in weak form
I Introduce piecewise linear basis functions {ϕi} with i = 0, .., n on

[0, 1] corresponding to nodes {θi} and we let ϕ = ϕi.
I We assume permeabilities and pressure are piecewise linear

interpolations of the hierarchical variable

K(x, θ) =

n∑
k=0

K(x, θk)ϕk(θ), α(x, θ) =

n∑
k=0

α(x, θk)ϕk(θ),

p(x, θ) =

n∑
k=0

p(x, θk)ϕk(θ)

I

−
n∑
j=0

∫
Ω

(
Kij(x)∇pj(x),∇q(x)

)
dx−

n∑
j=0

∫
Ω

αij(x) pj(x) q(x) dx

=

∫
Ω

fi(x) q(x) dxComputational Method 16



Hierarchical Discretization Cont.

I where

Kij(x) =

n∑
k=0

K(x, θk)

∫
[0,1]

ϕk(θ)ϕi(θ)ϕj(θ) dθ

αij(x) =

n∑
k=0

α(x, θk)

∫
[0,1]

ϕk(θ)
∂ϕi(θ)

∂θ

∂ϕj(θ)

∂θ
dθ (1)

fi(x) = αvpvδi0 + αapaδin

I The hierarchical discretization leads to a tridiagonal system for
the pressures pi(x, θi).
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Example: 3 layer model

I For three levels i = 0, 1, 2 and with isotropic and space independent
permeability Kij = KijI per level we have ∇ ·Kij∇ = Kij∆

I This yields

−

K00∆ + α00 K01∆ + α01

K10∆ + α10 K11∆ + α11 K12∆ + α12

K21∆ + α21 K22∆ + α22

p0

p1

p2

 =

f0

f1

f2

 .
(2)

I Permeability matrix Kij , conductivity matrix αij , and right hand
side vector fi as given in equation (1).
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The K and α matrices in the 3 layer model

I The scalar Kij is the ij entry of the matrix

1

24

3K0 +K1 K0 +K1 0
K0 +K1 K0 + 6K1 +K2 K1 +K2

0 K1 +K2 K1 + 3K2

 ,
I The scalar αij is the ij entry of the matrixα0 + α1 +Gv −(α0 + α1) 0

−(α0 + α1) α0 + 2α1 + α2 −(α1 + α2)
0 −(α1 + α2) α1 + α2 +Ga

 ,
I The scalar fi is the i component of the vector[

Gvpv, 0, Gapa
]T
.

Here α0, α1, α2 and K0,K1,K2 are the conductivities and
permeabilities at the three hierarchical levels and are given in
equation (1).
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Exterior Algebra

I Motivation: generalize the cross product × from R3 to Rn
I V an n dimensional real vector space with elements u, v, . . .
I u ∧ v exterior (wedge) product of u and v

– anti-symmetric: u ∧ v = −v ∧ u
– linear in each factor: (au+ bv) ∧ w = au ∧ w + bv ∧ w

I
∧0

V = R
I
∧1

V = V
I
∧2

V = V
∧
V , 2-vectors

I continue recursively, demanding associativity
I
∧p

V p-vectors, dim(
∧p

V ) =
(
n
p

)
I dim(

∧n
V ) = 1

I V inner product space:
– natural isomorphism between V and its dual V ∗

– flat: [ : V → V ∗, u[(v) = (u, v)
– sharp: ] : V ∗ → V , ] = [−1

– inner product on V induces inner product on
∧p V (the notion of

length induces notions of area, volume, p-volume)
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Hodge ∗

I Motivation: u ∧ v is a 2-vector, so not quite u× v yet

I Solution: so map u ∧ v to u× v - call this map Hodge ∗
I Then: u× v = ∗(u ∧ v)

I V oriented inner product space: ∗ :
∧p

V →
∧(n−p)

V

I natural isomorphism

I Let {e1, e2, . . . , en} be a basis for V

I Let σ = e1 ∧ e2 ∧ · · · ∧ en be a chosen orientation

I Hodge ∗: u ∧ v = (∗u, v)σ, ∀v ∈
∧(n−p)

V

I Intuition: complementary n− p vector to the given p vector

– orthogonal
– consistent with the orientation

I Side result: u · v = (u, v) = ∗(u ∧ ∗v) = ∗(v ∧ ∗u)
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Hodge ∗ Example

I V = R2:
∗1 = e1 ∧ e2

∗e1 = e2

∗e2 = −e1

∗(e1 ∧ e2) = 1

I V = R3:
∗1 = e1 ∧ e2 ∧ e3

∗e1 = e2 ∧ e3

. . . = . . .
∗(e1 ∧ e2) = e3

. . . = . . .
∗(e1 ∧ e2 ∧ e3) = 1
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Exterior Calculus

I Differential forms - generalizations of differentials

– Let M be a manifold
– 0-forms are functions
– 1-forms are differentials
– k-forms at a point P are k vectors (elements in

∧k T ∗
PM)

I Exterior Derivative d

– df = ∂f
∂xi

dxi

– d(fdx1 ∧ · · · ∧ dxk) = df ∧ dx1 ∧ · · · ∧ dxk

I Adjoint derivative: δ = ∗d∗, with (δα, β) = (α, dβ)

I Laplacian: ∆ = (d+ δ)2

I Interior Product: (iXα)(v2, . . . , vk) = α(X, v2, . . . , vk)

I Lie Derivative (using Cartan’s Magic Formula):
LXα = diXα+ iXdα
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Curved Surfaces

I Numerically, a major issue is: retina is a curved surface

I Flat: ( ∂
∂xi )[ = gijdx

j , (v[)i = gijv
j

I Sharp: (dxi)] = gij ∂
∂xj

I Hodge ∗: (∗α)i1,i2,...,in−k
= 1

k!α
j1,...,jk

√
det g εj1,...,jk,i1,...,in−k
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Algebraic Topology Approach to Space Discretization

I Simplices

I Simplicial Complexes

I Chains

I Cochains

I Boundary operator ∂

I Discrete exterior derivative D = ∂T

I Discrete version of Stokes theorem
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MDEC: DEC Hodge *

I Marsden, Hirani, Desbrun, et al.: 1
|∗σ|

∫
∗σ ∗α = 1

|σ|
∫
σ
α

I [MDEC ]ij =
|∗σk

i |
|σk

i |
δij

I Advantage: MDEC diagonal

I Disadvantage: MDEC not positive definite, because circumcenter
may be outside the simplex

I Example: standard 2-simplex; vertices: (0, 0), (1, 0), (0, 1)

MDEC
1 =

 1
2 0 0
0 1

2 0
0 0 0
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MWhit: FEEC Hodge *

I Arnold, Falk, Winther.

I Whitney 0-forms are barycentric coordinates:

I Whitney 1-forms: ηk = λidλj − λjdλi
I [MWhit]ij =

∫
ηiηjdA

I Advantage: MWhit is positive definite, because barycenter is always
inside the simplex

I Disadvantage: MWhit not diagonal, (MWhit)−1 not sparse

I Example: standard 2-simplex; vertices: (0, 0), (1, 0), (0, 1)

MWhit
1 =

 1
3

1
6 0

1
6

1
3 0

0 0 1
6
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PyDEC - A Python Implementation of DEC

I Authors: Hirani and Bell

I Efficient operator implementation in terms of sparse matrices

I Data structures

– Simplicial Complex
– Regular Cube Complex

I Operators

– Discrete Exterior Derivative
– Diagonal Sparse Matrix Discrete Hodge ∗
– First Order Whitney Hodge ∗

I Provides a nice playground for numerical experiments
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Data

Figure: Retina Fundus Image

webvision.med.utah.edu/book/part-i-foundations/simple-anatomy-of-the-retina/

Computational Method 29



Spatial Discretization

Figure: Triangularization by
gmsh.
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Example: 3 layer model geometry

Figure: Three layer
discretization

The θ = 1 layer represents arterioles, the θ = 1
2 layer represents

capillaries and θ = 0 represents venules.
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Capillary Velocity Field

Figure: Capillary Blood Velocity
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Application: Myopia

Figure: Capillary Blood Velocity in Myopia

The myopic eye is extended along the optical axis.

Results 34



Eye Deformations

Figure: Eye Shapes
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Velocity Field Deformations

Figure: Velocity Difference

Caution: to compare the velocity field difference in a meaningful way, all
velocity fields are first pulled back to the sphere.
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Summary

I The hierarchical Darcy equation models blood flow in the retina as a
hierarchical porous medium.

I Exterior Calculus generalizes vector calculus to manifold and is
convenient for formulating and solving models on surfaces.

I The discrete exterior derivative d is unique and determined by the
discrete Stokes theorem.

I The discrete Hodge * operator is an open question and a topic of
current research.

I DEC and FEEC are related; they differ in the Hodge * discretization.

I DEC and FEEC can be mixed with traditional FEs.

I Curvature may play an important role in the development of
glaucoma.
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Future Plans

I Generalize the model to space dependent parameters.

I Couple the model with elasticity.

I Use the model to make predictions for other eye pathologies.

I The eye is the window into the body. What can we learn about
conditions in the rest of the body?

I Personalized medicine: couple the model with image analysis front
end.
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