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Abstract A computational model for retinal hemodynam-
ics accounting for ocular curvature is presented. The model
combines (i) a hierarchical Darcy model for the flow through
small arterioles, capillaries and small venules in the retinal
tissue, where blood vessels of different size are comprised in
different hierarchical levels of a porous medium; and (ii) a
one-dimensional network model for the blood flow through
retinal arterioles and venules of larger size. The non-planar
ocular shape is included by (i) defining the hierarchicalDarcy
flow model on a two-dimensional curved surface embed-
ded in the three-dimensional space; and (ii) mapping the
simplified one-dimensional network model onto the curved
surface. The model is solved numerically using a finite ele-
ment method in which spatial domain and hierarchical levels
are discretized separately. For the finite element method, we
use an exterior calculus-based implementation which per-
mits an easier treatment of non-planar domains. Numerical
solutions are verified against suitably constructed analytical
solutions. Numerical experiments are performed to investi-
gate how retinal hemodynamics is influenced by the ocular
shape (sphere, oblate spheroid, prolate spheroid and barrel
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are compared) and vascular architecture (four vascular arcs
and a branching vascular tree are compared). The model
predictions show that changes in ocular shape induce non-
uniform alterations of blood pressure and velocity in the
retina. In particular, we found that (i) the temporal region is
affected the least by changes in ocular shape, and (ii) the bar-
rel shape departs the most from the hemispherical reference
geometry in terms of associated pressure and velocity distri-
butions in the retinal microvasculature. These results support
the clinical hypothesis that alterations in ocular shape, such
as those occurring in myopic eyes, might be associated with
pathological alterations in retinal hemodynamics.

Keywords Mathematical modeling · Retinal hemody-
namics · Hierarchical porous medium · Ocular curvature ·
Vascular network · Finite element exterior calculus
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1 Introduction

The rapid advance of imaging technologies in ophthalmol-
ogy is making available a continually increasing number
of data regarding retinal morphology, hemodynamics and
metabolism. An accurate and efficient interpretation of such
data is the key to advancing the understanding of ocular
diseases and their treatment. However, the clinical inter-
pretation of retinal measurements is still very challenging.
Many systemic and ocular factors combine to give rise to the
observed data, and it is extremely difficult to single out their
individual contributions during clinical and animal studies.
Mathematical modeling is gaining more and more attention
in the ophthalmic science, as it may help providing a quanti-
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tative representation of the biophysical processes in the eye
and their interwoven physiology. Here we use mathemati-
cal modeling to theoretically investigate how and to what
extent different ocular shapes and vascular architectures will
influence the model predictions for the retinal perfusion, i.e.,
hemodynamics in themicrovasculature nourishing the retinal
tissue.

The choice to study changes in ocular shape and vas-
cular architecture is motivated by clinical observations.
Alterations in ocular shape, as it occurs for example in
myopia, are often associated with vascular abnormalities
(Benavente-Perez et al. 2010; Mamikonian et al. 2013;
Shimada et al. 2004) and with higher risks of severe ocu-
lar conditions, such as glaucoma (Galassi et al. 1998;
Leske 2007), retinal detachment (Lin et al. 2013; Zafar
et al. 2013) and maculopathy (Foster and Jiang 2014;
Hsu et al. 2014). Architectural changes in the retinal vas-
culature are also often associated with ocular diseases,
including glaucoma (Gugleta et al. 2013; Koh et al. 2010;
Tham et al. 2013; Wu et al. 2013), diabetic retinopa-
thy (Crosby-Nwaobi et al. 2012a, b; Habib et al. 2014)
and myopia (Fledelius and Goldschmidt 2010; Lim et al.
2011).

Several theoretical approaches have been used to cap-
ture the details of the retinal vasculature, including network
models, fractal models (based on Murray’s law Murray
1926; Sherman 1981) and recently multi-fractal analysis
Talu (2013). Interestingly, variousmodeling approaches have
been proposed to model retinal blood flow (Arciero et al.
2013; Guidoboni et al. 2014; Sacco et al. 2011; Takahashi
et al. 2009), and leverage information from fundus images
to improve physically based models (Ganesan et al. 2010,
2011; Liu et al. 2000).

To the best of our knowledge, however, none of the cur-
rently available models describing retinal hemodynamics
accounts for the curvature of the retinal surface, which is
indeed the main novelty of our study from both the modeling
and clinical viewpoints.

In this paper, we describe retinal perfusion via amultiscale
approach. The blood flow in retinal arterioles and venules
of larger size is described using a one-dimensional network
model. The blood flow in the microcirculation, comprising
small arterioles, capillaries and small venules, is described
using a hierarchical Darcy flow model where blood vessels
of different size correspond to hierarchical levels of differ-
ent permeability (D’Angelo 2007; Vankan et al. 1997). We
remark that indeed a poroelastic model would be more suit-
able for the description of retinal perfusion, since the retina
is directly exposed to the action of the intraocular pressure
which might alter vascular diameters and, consequently, reti-
nal blood flow (Guidoboni et al. 2014). In this perspective,
the Darcy model for the flow through a porous (rather than
poroelastic) medium utilized here should be seen as an infor-

mative and necessary first step toward the development of
more complex models.

In order to account for the non-planar ocular shape,
the hierarchical Darcy flow model is defined on a two-
dimensional curved surface embedded in the three-dimensi-
onal space, and the one-dimensional network model is
mapped onto the curved surface. In particular, here we com-
pare four different geometries of clinical interest: sphere,
oblate spheroid, prolate spheroid and barrel (Moriyama et al.
2011).

We use finite elements to discretize the hierarchical vari-
able and reduce the hierarchical Darcy flow equation to a
coupled system of Darcy flow equations. We then use finite
element exterior calculus to discretize the spatial variable
and couple the system of hierarchical Darcy flow equations
to the one-dimensional network model via delta functions.
Finite element exterior calculus provides a convenient frame-
work for problems on curved surfaces. In particular, we use
the PyDEC (Bell and Hirani 2012) library for our numerical
experiments.

The mathematical model is described in Sect. 2 and the
numerical method adopted to solve the model is presented
in Sect. 3. Numerical solutions are verified against suitably
constructed analytical solutions in Sect. 4. The numerical
results are presented and discussed in Sect. 5. Conclusions
and future directions are outlined in Sect. 6.

2 Mathematical model

2.1 Hierarchical Darcy flow model

We describe the retinal tissue as a thin two-dimensional
curved surface Ω embedded in a three-dimensional space.
Therefore, x ∈ Ω denotes a vector of spatial coordinates in
R3.

The retinal microvasculature through the tissue is com-
posed of a network of vessels of different diameter and is
modeled as a hierarchical porous medium (Vankan et al.
1997). In this framework, blood vessels are considered as
pores in the tissue, and a hierarchical variable θ , defined on
the interval [0, 1], is introduced to represent the variations in
diameters of the pores. Small arterioles and small venules,
corresponding to the levels θ = 1 and 0, respectively,
are coupled with the one-dimensional network described in
Sect. 2.3.

Blood flow takes place both in the spatial direction
(through vessels of comparable radius) and the hierarchi-
cal direction (from arterioles to venules), so that model
parameters and unknowns are functions of both spatial and
hierarchical variables x and θ .

Here we consider the stationary problem, which consists
of finding spatial velocity v = v(x, θ), hierarchical velocity
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ω = ω(x, θ), and pressure p = p(x, θ), by solving the
following system:

∇ · (nbv)+
∂

∂θ
(nbω) = 0 x ∈ Ω, θ ∈ (0, 1) (1a)

nbv = −K∇p x ∈ Ω, θ ∈ (0, 1) (1b)

nbω = −α
∂p
∂θ

x ∈ Ω, θ ∈ (0, 1) (1c)

subject to the boundary conditions

(nbv)(x, θ) · n = 0, x ∈ ∂Ω, θ ∈ [0, 1] (2a)

(nbw)(x, 0) = −Gv

(
p(x, 0) − pv(x)

)
, x ∈ Ω (2b)

(nbw)(x, 1) = −Ga

(
pa(x) − p(x, 1)

)
, x ∈ Ω. (2c)

Here nb is the tissue porosity or fluid volume fraction (ratio
between blood volume and total volume of blood and tis-
sue in the reference volume of the porous medium), −nbω
is the tissue perfusion (volume of blood flowing down in
the hierarchy per unit tissue), K is the spatial permeability
tensor and α is the hierarchical permeability. In general,
porosity and permeability may depend both on x and θ .
In the boundary conditions, n represents the vector nor-
mal to the outer boundary of the spatial tissue domain Ω ,
and Gv and Ga are the hydraulic conductances between
lowest hierarchy and draining veins, and between the high-
est hierarchy and feeding arteries, respectively. Following
D’Angelo (2007), we will express the hydraulic conduc-
tances as

Gv = αvδv(x) and Ga = αaδa(x) (3)

where αv and αa are venous and arterial conductances and
δv(x) and δa(x) are delta functions which differ from zero
onlywhere the feeding arteries anddrainingveins are located,
respectively. The intravascular pressure in the feeding arter-
ies and draining veins are denoted by pv(x) and pa(x),
respectively, andαv andαa are scalar functions possibly vary-
ing with x.

The well posedness of equations (1a)–(1c) with bound-
ary conditions (2a)–(2c) with the delta function data of Eq.
(3) is discussed in D’Angelo (2007). In this paper, we solve
system 1 with the boundary conditions 2 on domains of dif-
ferent shape and for vascular tree of different geometries, as
described in the following sections.

In order to facilitate the comparison between vascular
trees of different geometry, it is useful to identify six regions
of clinical interest in the retina, as schematized in Fig. 1.
The major retinal vessels depart from the optic nerve head
(ONH) and virtually divide the retina into four quadrants,
referred to as the inferior (I), superior (S), nasal (N) and
temporal (T) quadrants. The fovea, located in the temporal

Fig. 1 Six regions of particular clinical interest in the retina: optic
nerve head (ONH), inferior quadrant (I), superior quadrant (S), nasal
quadrant (N), temporal quadrant (T) and fovea

Fig. 2 (Left) Representation of three hierarchical levels, where four
main arterioles are included as sources in the arterial level and four
main venules are included as sinks in the venous level; (right) spherical,
oblate ellipse, prolate ellipse and barrel shapes

region, provides the sharpest vision and is avascular. The
retinal image is taken from the DRIVE database (Staal et al.
2004).

2.2 Domain geometry

The reference geometry for the domain Ω is the hemispher-
ical surface with radius R = 12 mm, representing a normal
eye. In addition, we consider the following shapes (also
depicted in Fig. 2):

1. an oblate spheroid with semi-axes R = 12 mm and
H = 10 mm, representing an eye with shorter axial
length (condition often associated with hyperopia);

2. a prolate spheroid with semi-axes R = 12 mm, H = 14
mm, representing an eye with longer axial length (con-
dition often associated with myopia);

3. a barrel-like surface described by a polynomial of degree
three p3(Z) = a1 + a2Z + a3Z2 + a4Z3 where Z =√
x2 + y2 satisfying the conditions p′

3(0) = 0, p3(0) =
H , p3( R2 ) = H − 1.3 mm, p3(R) = 0; representing an
eye with longer axial length and flattened posterior sclera
(another condition often associated with myopia).
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2.3 Arterial and venous vascular tree geometry

Larger arterioles and venules are described using simplified
one-dimensionalmodels. Let us denote byΛa andΛv the col-
lection of centerlines of the arterial and venous networks in
the flat plane, respectively. The centerlines are then mapped
onto the spherical surface as shown in Fig. 3. More precisely,
every point (x0, y0) inΛa orΛv is mapped into a point on the

sphere (x0, y0, z0 =
√
x20 + y20 ). The resulting Γa = γa(Λa)

and Γv = γv(Λv) lay on the curved surface, meaning that
Γa ⊂ Ω ⊂ R3 and Γv ⊂ Ω ⊂ R3. We rotate the geometry
of the remapped vascular networks by π/4 about the z axis
followed by a rotation of π/6 about the x axis, so that the
arcs originate from a point located at x = 0, y = −R/2
and z = R

√
3/2, representing the location of the optic nerve

head (ONH). The same rotation is applied to the arterial and
venous networks.

In this paper, we consider two vascular architectures
embodying different levels of detail. The simplest architec-
ture includes only four major feeding arteries and draining
veinsmodeled as four arcs, see Fig. 2, alongwhich a constant
pressure is imposed.Herewe consider pa = 33.75mmHg for
arteries and pv = 16.4 mmHg for veins. This simple vascu-
lar architecture is used to compare the numerical simulations
obtained when varying the ocular shape, see Sect. 5.2.

A more realistic vascular model is obtained by applying
the dichotomous tree approach proposed by Takahashi et al
(2009) starting from the four major arcs mentioned above.
Figure 3 (Left) shows the centerlines of a collection of binary
trees joint at the root. The first four branches are 3.6 and 2.4
mm long.Branches of the following generations are scaled by
0.8, spatially arranged with angles of π/6, π/8, π/10, π/12
between parent/child and child/child branches. The angles
are chosen to ensure that (i) the domain is well covered by
the vascular tree, (ii) the foveal area is free of vessels and (iii)
the ends of the binary trees are not too close to each other,
see also Fig. 1.

At each branching point of the dichotomous tree, the rela-
tionship between the radius R1 of the mother branch and the
radii R2,1 and R2,2 of the two daughter branches is assumed
to be:

Fig. 3 (Left) Collection of binary trees joined at their roots on a flat
domain; (right) binary trees mapped onto the spherical surface and
meshed with Gmsh

Table 1 Pressures in mmHg at nodes of the vascular tree

Branching node 0 1 2 3 4

Arterial pressure 33.5 31.51 29.56 27.64 25.8

Venous pressure 16.4 18.39 20.34 22.26 24.1

Rm
1 = Rm

2,1 + Rm
2,2, (4)

with m = 2.85 Murray (1926). The length L j of each indi-
vidual branch characterized by the radius R j is calculated
as

L j (R j ) = β Rη
j , (5)

where η = 1.15 and β = 7.4 (Takahashi et al. 2009).
In each vessel, we assume that: (i) the blood behaves as

a Newtonian viscous fluid of viscosity µ; (ii) the flow is
laminar, stationary and axially symmetric; and (iii) no-slip
boundary conditions are imposed at the lateral vessel bound-
ary. These assumptions allow us towrite the blood pressure p
inside each vessel as a function of the curvilinear coordinate
s along the vessel centerline and to use Hagen-Poiseuille’s
law to calculate the pressure p as

p(s) = p0 −
(
8µ j L j

πR4
j

)

Q j s for s ∈ [0, L j ] (6)

where s = 0 and s = L j indicate the upstream and down-
stream ends of the vessel, p0 is the upstream pressure and
Q j is the volumetric flow rate. We recall that mass conser-
vation at each branch implies that Qg = 2Qg+1, where g is
the generation of a branch.

Viscosity values per branch segment are linearly interpo-
lated from viscosity values reported in Arciero et al. (2013),
where µ = 2.28 cPa in the larger arterioles and venules, and
µ = 2.08 cPa in the smaller arterioles and venules. Pressure
values at the four main branches of the central retinal artery
(CRA) and the central retinal vein (CRV) are assumed to be
p0a = pa = 33.75 mmHg and p0v = pa = 16.4 mmHg,
respectively,which is in agreementwithArciero et al. (2013).
The average blood flow rate in the retina is assumed to be
Q̄tot = 36.11 µl/min, as reported in the Table 2. For the
blood flow rate after the first division into the four major
branches, we assume Q0 = Q̄tot/4.

Pressure values at the branching nodes of the binary tree
are computed via (6) using the length of the branches in the
flat plane and are summarized in Table 1. Note that 760.0
mmHg = 101.325 kPa.

The computational mesh for the domain Ω is generated
with the Delaunay algorithm using Gmsh (Geuzaine and
Remacle 2009), with additional functionality to ensure that
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Table 2 Values of material and physical parameters in the hierarchical porous media model for the retinal circulation

Parameters Arteries (i = 2) Capillaries (i = 1) Veins (i = 0) Parameters Value

Hierarchy (θ) [1] 1 1/2 0 Eye radius (R) [mm] 12

Number of pores (np) [1] 40 187890 40 Tissue thickness (h) [µm] 100

Pore diameter (D) [µm] 47.2 6.0 68.5 Total tissue volume (Vtot) [mm3] 90.48

Pore length (L) [cm] 0.52 0.067 0.52 Arterial pressure (pa) [mmHg ] 33.75

Porosity (nb) [1] 0.0040 0.0393 0.0085 Venous pressure (pv) [mmHg] 16.4

Average velocity (v̄) [cm/s] 0.86 0.011 0.41 Average blood flow rate (Q̄tot) [µl/min] 36.11

Average pressure ( p̄) [mmHg] 28.75 21.23 17.56 Average tissue perfusion (ωt ) [1/s] 0.007

Conductance (α) [1/(s kPa)] 0.003 0.005 0.007 Arterial conductance (αa) [1/(s kPa)] 0.006

Permeability (K ) [mm2/(s kPa)] 2 0.1 6 Venous conductance (αv) [1/(s kPa)] 0.023

the centerlines Γa and Γv are along the edges of the triangu-
lation while avoiding a distorted mesh.

3 Numerical method

3.1 Discretization of the hierarchical variable θ

To discretize the system 1 and 2 in the hierarchical variable,
we follow the approach described in Vankan et al. (1997).We
first write 1 in direct formwith only pressure as the unknown:

− ∇ · (K∇p) − ∂

∂θ

(
α

∂p
∂θ

)
= 0(x, θ) ∈ Ω × (0, 1). (7)

Let ϕ = ϕ(θ) be a smooth function defined on [0, 1].
To obtain the weak formulation, we multiply (7) by a test
function ϕ(θ), integrate by parts over [0, 1] and utilize the
boundary conditions in θ to obtain:

∫ 1

0
−∇ · (K(x, θ)∇p(x, θ))ϕ(θ)+ α(x, θ)

∂p(x, θ)
∂θ

ϕ′(θ) dθ

+ϕ(1)Ga p(x, 1)+ ϕ(0)Gv p(x, 0)

= ϕ(0)Gv pv(x)+ ϕ(1)Ga pa(x). (8)

Now, to obtain a semi-discrete model in the hierarchical vari-
able θ , we introduce piecewise linear basis functions {ϕk},
with k = 0, . . . , n on [0, 1] corresponding to nodes {θk}. We
write permeability, conductance and pressure as piecewise
linear interpolations at the nodes of the discrete hierarchical
variable, namely

K(x, θ) =
n∑

k=0

K(x, θk)ϕk(θ), (9a)

α(x, θ) =
n∑

k=0

α(x, θk)ϕk(θ), (9b)

p(x, θ) =
n∑

k=0

p(x, θk)ϕk(θ). (9c)

Substituting expressions (9a)–(9c) into (8) and considering
a specific basis function ϕ = ϕi , we obtain the semi-discrete
weak form

n∑

j=0

−∇ ·
(
Ki j (x)∇p j (x)

)
+

n∑

j=0

αi j (x)p j (x) = fi (x)

(10)

where

Ki j (x) =
n∑

k=0

K(x, θk)
∫ 1

0
ϕk(θ)ϕi (θ)ϕ j (θ) dθ (11a)

αi j (x) =
n∑

k=0

α(x, θk)
∫ 1

0
ϕk(θ)ϕ

′
i (θ)ϕ

′
j (θ) dθ

+ δi0δ j0Gv + δinδ jnGa (11b)

fi (x) = δi0Gv pv + δinGa pa (11c)

and where p j (x) = p(x, θ j ) and δi j is the Kronecker delta.
For each i and j , Ki j (x) is still a 2 × 2 matrix to poten-
tially account for anisotropies in the tissue permeability. In
this paper though, as in D’Angelo (2007), we neglect such
anisotropy and we assume that permeability and conductiv-
ity depend only on θ . Then K(θ) = K (θ)I, which implies
Ki j = Ki j I.

The hierarchical discretization leads to a tridiagonal sys-
tem for the pressures p j (x) at each hierarchical node. In the
case of three nodes, namely j = 0, 1, 2, we obtain

⎡

⎣
−K00∆ + α00 −K01∆ + α01 0
−K10∆ + α10 −K11∆ + α11 −K12∆ + α12

0 −K21∆ + α21 −K22∆ + α22

⎤

⎦

⎡

⎣
p0
p1
p2

⎤

⎦ =

⎡

⎣
f0
f1
f2

⎤

⎦ (12)
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where the scalar Ki j is the i j entry of the matrix

1
24

⎡

⎣
3K0 + K1 K0 + K1 0
K0 + K1 K0 + 6K1 + K2 K1 + K2

0 K1 + K2 K1 + 3K2

⎤

⎦ ,

the scalar αi j is the i j entry of the matrix

⎡

⎣
α0 + α1 + Gv −(α0 + α1) 0
−(α0 + α1) α0 + 2α1 + α2 −(α1 + α2)

0 −(α1 + α2) α1 + α2 + Ga

⎤

⎦ ,

and the scalar fi is the i component of the vector

[
Gv pv, 0,Ga pa

]T
.

Here α0,α1,α2 and K0, K1, K2 are the conductivities and
permeabilities at the three hierarchical levels and are given
in Eq. (24) and (26).

The homogeneous Neumann boundary conditions (2a)
complete the system. Note that the Robin pressure condi-
tions (2b) and (2c) contribute to the two terms αi j and fi .

3.2 Spatial discretization using exterior calculus

Equation (12) can be written as a system for each θ level i
(using Einstein notation)

−Ki j ∆ p j + αi j p j = fi (13)

and the systems obtained for each i have to be solved simul-
taneously as indicated in Eq. (12).

To carry out the discretization of the spatial operator ∆ in
(13), there are several alternatives even within the framework
of finite element methods. The domainΩ is a curved surface
embedded in R3 and so the Laplacian operator ∆ in Eq. (13)
is the Laplace–Beltrami operator. One approach toward dis-
cretizing the Laplace–Beltrami operator is via surface finite
element methods (Demlow 2009; Demlow and Dziuk 2007;
Dziuk 1988). Another systematic framework is the use of
exterior calculus discretization, and this is the one we follow
in this paper. Exterior calculus is a generalization of cal-
culus to manifolds and allows the definition of differential
operators in a coordinate invariant manner, which can then
be discretized by intrinsic computation of quantities in the
triangles approximating the surface.

For computational purposes, exterior calculus has been
discretized as finite element exterior calculus (Arnold et al.
2010) and discrete exterior calculus (Desbrun 2005; Hirani
2003). These discretizations are useful either when a mixed
method (involving both velocities and pressures) is to be
implemented or when the domain is not flat, as is the case
in this paper. They have been implemented in the software

package PyDEC (Bell and Hirani 2012), which we used for
our computations.

Wediscretize the first termon the left-hand side of Eq. (13)
using finite element exterior calculus. Since Eq. (13) involves
a pressure-only formulation, the resulting matrix is identical
to the one obtained by a standard finite element formulation.
The matrix corresponding to −Ki j∆p j in the left-hand side
of Eq. (13) is

Ki j dT0 ∗1d0 p j . (14)

Here dT0 ∗1d0 is the usual stiffness matrix of standard piece-
wise linear finite element method. The matrix d0 has N1
rows and N0 columns, where N1 is the number of edges in
the triangulation approximation of Ω and N0 is the number
of vertices in the triangulation. Each column corresponds to
a vertex and the entries are+1, −1 or 0, depending on if that
vertex belongs to the head of an edge, its tail, or not at all.
The matrix ∗1 is of size N1 × N1 and is obtained by com-
puting inner products of Whitney forms, also known as edge
elements. See Bell and Hirani (2012) for details.

We now describe the discretization of the δi0δ j0Gv and
δinδ jnGa terms in Eq. (11b) and the discretization of the
right-hand side fi . The terms δi0Gv pv and δinGa pa on the
right-hand side are the prescribed venous and arterial pres-
sures at the vertices corresponding to the edges of the triangu-
lation of veins and arteries. In the discretization, we consider
the values at vertices to be piecewise constant, with each
such constant value extending from the vertex to the mid-
point of all edges containing that vertex. The terms δi0δ j0Gv
and δinδ jnGa are treated the same way. This is achieved by
defining thematrixE to be a diagonal matrix of size N0×N0.
The nonzero diagonal entry corresponding to a vertex is 0.5
times the sumof lengths of edges containing that vertex. Then
the termsαi j p j on the left-hand side of (13) are discretized as

∗0αi j p j + E
(
δi0δ j0αv + δinδ jnαa

)
p j (15)

and fi on right-hand side of (13) is discretized as

E
(
δi0αv pv + δinαa pa

)
(16)

where pa and pv contains the values of prescribed pressures
sampled at the vertices. Here ∗0 is the usual mass matrix of
standard piecewise linear finite elements. Thus the complete
discretization of (13) is

n∑

j=0

Ki jdT0 ∗1d0 p j

+∗0αi j p j + E(δi0δ0 jαv + δinδnjαa)p j

= E
(
δi0αv pv + δinαa pa

)
. (17)
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One of the authors recently showed that a formulation based
on exterior calculus is very effective in simulating Darcy
flowon curved surfaces (Hirani andNakshatrala 2015).How-
ever, the computational approach in the present article differs
from that discussed in Hirani and Nakshatrala (2015) since
here we consider the following: (i) an extension of the Darcy
equations to the flow through a hierarchical porous medium,
thereby requiring suitable discretization of the corresponding
hierarchical variable θ ; (ii) source terms distributed along the
centerlines of the vascular trees, thereby requiring suitable
discretization of the corresponding delta functions. In addi-
tion, we remark that the method in Hirani and Nakshatrala
(2015) relies on amixed formulation of the problem,whereas
here we solve for the pressure as the sole primal variable.

3.3 Pullback of the velocity field to the sphere

To compare the velocity fields defined on different domain
geometries, we pull back all velocity fields to the sphere. The
velocities u =

[
u1, u2, u3

]T from the oblate and the prolate
ellipsoidal surface are pulled back to the spherical surface
by a simple scaling v =

[
u1, u2, u3 H

R

]T
. To pull the veloc-

ities from the barrel-shaped surface back to the sphere, we
extend the map from the sphere to the barrel-shaped surface
φ: S2 → B2 to a map in three dimensions Φ:P(Q) → p(q),
where Q,q ∈ R2 and P,p ∈ R3. Tangent vectors are
pushed forward by the differential of the map v = Φ∗ (V) =
DΦ (V) = FV. The map and its differential are given by

Φ:

⎡

⎣
X
Y
Z

⎤

⎦ →

⎡

⎣
x = X
y = Y

z = p3(Z)

⎤

⎦ DΦ =

⎡

⎣
1

1
∂z
∂Z

⎤

⎦

where z = p3(Z) is the polynomial of degree three describ-
ing the barrel shape, see Fig. 4. Note that the map is not
invertible for some values ∂z

∂Z = 0, so we cannot compute
the inverse of F to pull back the barrel velocity to the sphere
but instead need to go ’backwards’:

γ ψ

Φ

S = ψ ◦ Φ ◦ γ−1

Sphere S2

V ∈ TPS2

P ∈ S2

Q ∈ R2

U

Barrel B2

v ∈ TpB2

p ∈ B2

q ∈ R2

u

Fig. 4 Map from sphere to barrel-shaped surface

V = Φ∗ (v) = Dγ −1 ◦ DS−1 ◦ Dψ (v) =

⎡

⎢⎣

v1

v2
−v1x−v2 y√
R2−x2−y2

⎤

⎥⎦ .

4 Verification of the numerical strategy

We construct here two ad hoc analytical solutions to the cou-
pled problem1 and 2 in order to test our numerical strategy. In
particular, we want to verify the correctness of our numerical
implementation with respect to:

1. the boundary conditions in 2 along the vessels Γv and Γa
involving delta functions δΓv and δΓa ;

2. combining the hierarchical and spatial discretization
using finite elements and discrete exterior calculus matri-
ces.

4.1 Testcase to verify the discretization of the boundary
conditions along the vessels Γv and Γa involving
delta functions δΓv and δΓa

The boundary conditions involving delta functions are those
pertaining to the θ -direction, see (2b) and (2c). When per-
forming the semi-discretization of the problem, these bound-
ary conditions become part of the right-hand side for a differ-
ential problem in space, as shown in (13). Thus, in order to
test the accuracy of the numericalmethod, it is enough to con-
sider the followingPoissonproblemwith aDirac source term:

∆p = δΓc in Ωc (18)

p = 0 on ∂Ωc

where, for simplicity, we assume that Ωc is the planar circle
of radius Rc centered at the origin, and thatΓc is its horizontal
diameter. Thus we can write

Ωc = {x = (x1, x2) | x21 + x22 < R2
c },

Γc = {x ∈ Ωc | x2 = 0}.
An analytical solution to problem (18) can be constructed
using standard techniques in partial differential equations
(Evans 1998). The solution p is written as the sum of two
parts, namely p = v + u, where v accounts for the Dirac
source in Ωc and u accounts for the boundary conditions on
∂Ωc. More precisely, v is the convolution of the fundamen-
tal solution k(x) = 1

2π log |x| with the source f (x) = δΓc ,
namely

v(x) =
∫

Ωc

k(x − y) f (y) dy

=
∫

Ωc

1
2π

log |x − y|δΓc(y) dy,
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Fig. 5 (Left) Colorplot of the analytical solution (19) for the pressure satisfying problem (18); (center) Colorplot of the difference between
analytical and numerical solution for the pressure satisfying problem (18); (right) logarithm of the Frobenius norm of the difference between
analytical and numerical solutions for the pressure satisfying problem (18)

andu satisfies theLaplace’s equation∆u = 0 inΩc,withu =
−v on ∂Ωc, which can be solved with the Poisson formula

u(x) = R2
c − |x|2
2π

∫

|ξ |=Rc

g(ξ)
|ξ − x|2 d(∂Ωa)

using polar coordinates ξ = ⟨Rc cosψ, Rc sinψ⟩. In sum-
mary, the analytical solution p = v + u is given by

p(x) = 1
4π

∫

Γc

log
(
(x1 − y1)2 + x22

)

+ R2
c − |x|2
2π

∫

∂Ωc

g(ξ)
|ξ − x|2 dξ . (19)

To test our numerical solver, we compute a numerical solu-
tion of (18) by solving (17) on a planar circle with Rc = 12
mm, K = 1 mm2/(s kPa), αi j = 0 (skPa)−1, and with
homogeneous boundary conditions. A colorplot of the ana-
lytical solution (19) is reported in Fig. 5 (Left), whereas
the difference between analytical and numerical solutions
(obtained for an average edge length of 3 mm) is portrayed
in Fig. 5 (Right). We notice that the largest errors are located
around the points (−R, 0) and (R, 0). This is due to the
fact that the analytical solution embodies the delta source
term on the whole interval [−R, R], whereas the numeri-
cal solution accounts for the delta source term only on the
interval [−(R − cl), R − cl], where cl is the average edge
length (i.e., excluding the two boundary points where homo-
geneous dirichlet boundary conditions are imposed). Figure 5
(Center) shows that the logarithm of the Frobenius norm of
the difference between numerical and analytical solutions is
decreasing with the average mesh size. Here we have con-
sidered average edge length of 12, 9, 6 and 3 mm. The slope
is roughly −1, which is consistent with a first-order method.

4.2 Testcase to verify the hierarchical and spatial
discretization using finite elements and discrete
exterior calculus matrices

Let us consider again Ω = Ωc, where Ωc is the planar circle
of radius Rc. Thus, in polar coordinates we can define the

cylinder Qc = Ωc × (0, 1) as

Qc = {(r,ψ, θ) | 0 ≤ r < Rc, 0 ≤ ψ < 2π, 0 < θ < 1}.

Let us denote byΣl the lateral surface of the cylinder, and by
Σb andΣt the bottom and top circular surfaces, respectively.
Let us define the lines Γv ⊂ Σb and Γa ⊂ Σt as

Γv = {(r,ψ, θ) | 0≤ r ≤ Rc, ψ=π/2orψ=3π/2, θ =0},
Γa = {(r,ψ, θ) | 0 ≤ r ≤ Rc, ψ = 0 or ψ = π, θ = 1}.

Then we consider the following simplified problem

−K (θ)

(
1
r

∂

∂r

(
r
∂p
∂r

)
+ 1

r2
∂2 p
∂ψ

)
− α(θ)

∂2 p
∂θ2

= f (20)

defined in Qc, where f is a given scalar function. We con-
struct an analytical solution to (20) subject to the following
boundary conditions:

∂p
∂r

= 0 on Σl, Σb \ Γv and Σt \ Γa,

p = pv on Γv,

p = pa on Γa. (21)

If the function f in (20) is given by

f (r,ψ, θ) = K (θ) b(θ)−a(θ)
r2 sin(2ψ)

− α(θ)
(

∂2a
∂θ2

cos2 ψ + ∂2b
∂θ2

sin2 ψ
)

(22)

where α(θ) = αaθ + (1− θ)αv, K (θ) = Kaθ + (1− θ)Kv,
a(θ) = p̄+ 3(pa − p̄)θ2 − 2(pa − p̄)θ3, p̄ = (pa + pv)/2,
and b(θ) = pv + 3( p̄ − pv)θ2 − 2( p̄ − pv)θ3, the problem
admits the exact solution

p(ψ, θ) = a(θ) cos2 ψ + b(θ) sin2 ψ. (23)

We set pa = 20 mmHg, pv = 10 mmHg, Rc = 12 mm,
Ka = Kv = 1 mm2/(s kPa), and αa = αv = 1 (skPa)−1.
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Fig. 6 (Top left) Colorplot of
the numerical solution
computed for problem (20) with
the boundary conditions (21)
and right-hand side(22), in the
case of 3 θ-levels. Difference
between numerical and
analytical solutions computed
for problem (20) with the
boundary conditions (21) and
right-hand side (22), in the case
of 3 θ-levels (top right), 5
θ-levels (bottom left) and 9
θ-levels (bottom right)

To obtain a numerical solution, we solve (17) with the
right-hand side vector (22). We assume Ki j = 1 mm2/(s
kPa) and αi j = αv = αa = 1 (skPa)−1. A colorplot of
the numerical solution is reported in Fig. 6 (Top Left) in the
case of 3 θ -levels. The remaining panels in Fig. 6 show that
the difference between numerical and analytical solutions
is less than 2% when 3, 5 and 9 θ -levels are considered.
Convergence was decided to be obtained when further mesh
refinements dono change the solution.Averagemesh element
length is 0.5 mm. For visualization of the results, we used
Mayavi Ramachandran et al. (2011).

5 Results of the numerical experiments

In this Section, we utilize our computational model to the-
oretically investigate some interesting features of retinal
hemodynamics. We consider three hierarchical levels cor-
responding to arterioles (θ = 1), capillaries (θ = 1/2) and
venules (θ = 0), see also Fig. 2. Values for material and
physical properties pertaining to each level are provided in
Sect. 5.1. Numerical experiments investigating how retinal
hemodynamics is influenced by the domain geometry and
vascular architecture are presented in Sects. 5.2 and 5.3.

5.1 Porosity, conductance and permeability

We utilize the theory of capillary models for porous media
(Causin et al. 2014; Huyghe et al. 1992), and we write the
porosity at each hierarchical level as

nb(θ) =
np(θ)πD(θ)2L(θ)

4Vtot

where n p is the number of pores in the volume, D is the pore
diameter, L is the length of pores and Vtot = 4πR2h/2 is
the total tissue volume, with R denoting the eye radius and

h denoting the tissue thickness. We have assumed here that
n p and D are constant in space and depend only on the hier-
archical level θ . Using the values from Arciero et al. (2013)
reported also in Table 2, we obtain the following estimates
for nb(θi ) = nbi :

nb2 = 0.0040, nb1 = 0.0393, nb0 = 0.0085.

Conductances between adjacent hierarchical levels can be
estimated knowing average pressure drops ∆ p̄i and mean
tissue perfusion ωt between levels as

αi ≃ ωt
∆θi

∆ p̄i

with ωt = Q̄tot/Vtot defined as the average blood volume
flow rate (Q̄tot) per unit tissue volume (Vtot). Using again the
values reported in Table 2, we obtain ωt = 0.007 s−1 and,
as a consequence, observing that ∆θi = 1/2, the following
estimates for αi in (skPa)−1 can be deduced:

α2 = ωt

2( p̄2 − p̄1)
= 0.003, α1 =

ωt

p̄2 − p̄0
= 0.005,

α0 = ωt

2( p̄1 − p̄0)
= 0.007. (24)

Venous and arterial conductances αv and αa are estimated
analogously, to obtain

αa =
ωt

2( p̄a − p̄2)
= 0.006, αv =

ωt

2( p̄0 − p̄v)
= 0.023,

(25)

again in (skPa)−1.
Thepermeability values at eachhierarchical level K (θi ) =

Ki are chosen as to obtain physiologically reasonable veloc-
ity distribution at the capillary levels of the hierarchy when
the spherical geometry is considered, see Fig. 2. Here we
used
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Fig. 7 Pressure fields in mmHg
(left) and velocity fields in mm/s
(right) for arterial (top),
capillary (middle) and venous
(bottom) level: hemispherical
surface with major feeding
arteries as four source terms in
the arterial level with
pa = 33.75 mmHg and the
major draining veins as four
source terms in the venous level
with pv = 16.4 mmHg

K2 = 2, K1 = 0.1, K0 = 6, (26)

measured in mm2/(s kPa).

5.2 Influence of domain geometry

We report in this Section solutions to 1 and 2 obtained with
the parameters described in Sect. 5.1 in the case of the four
different domain geometries described in Sect. 2.2. Here the
arterial and venous vascular networks are modeled as four
major arcs, as described in Sect. 2.3 and depicted in Fig. 2.

Simulated pressure fields and velocity fields in the refer-
ence case of hemispherical geometry are reported in Fig. 7.
For all the three hierarchical levels corresponding to arte-

rioles, capillaries and venules, pressures and velocities are
within physiological ranges and, in particular, are of the
same order of magnitude as those reported in Arciero et al.
(2013).

Differences in pressure fields and velocity fields between
the non-spherical geometries and the hemispherical refer-
ence model are reported in Fig. 8. We focus here on the
capillary level, since it is the most important level for tis-
sue perfusion and metabolism. We remark that the velocity
fields are obtained by subtracting velocity field pullbacks to
the sphere, as described in Sect. 3.3. Even though the distrib-
utions of velocity and pressure for the four cases look similar,
interesting similarities and differences can be noticed when
they are compared to the sphere, see Fig. 8.
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Fig. 8 Pressure differences in
mmHg (left) and differences in
the magnitude of velocities in
mm/s (right) at the capillary
level between (top to bottom)
oblate spheroid and sphere,
prolate spheroid and sphere,
barrel and sphere

Overall, the blood velocity in the temporal region is less
impacted by changes in domain geometry, i.e., ocular shape,
since negligible differences are predicted in the velocityfields
between non-spherical and spherical geometry for all cases,
see Fig. 8. The largest difference from the velocity field cal-
culated for the sphere is reported for the barrel geometry, see
Fig. 8 (bottom), where nasal, inferior and superior regions
exhibit differences up to 0.045 mm/s, corresponding to a
30% increase with respect to the sphere.

Pressure differences are largest near the ONH, where
the maximal pressure difference reaches 0.015 mmHg for
barrel geometry. The precision of the computed pressure
values in the capillary level is 1e−6 mmHg, and therefore,

the predicted differences are significant from the numerical
viewpoint.

5.3 Influence of vascular architecture

The four arcs model for the arterial and venous net-
work utilized in the previous Section is indeed an extreme
simplification of real vascular architectures. It is reason-
able to hypothesize that different modeling choices for
the vascular architecture would influence retinal perfusion.
In this Section, we compute pressure and velocity fields
obtained in the case of reference hemispherical geome-
try with the arterial (resp. venous) network modeled as
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Fig. 9 Pressure fields in mmHg
(left) and velocity fields in mm/s
(right) for arterial, capillary and
venous level. Binary tree model
with same pressure on all arc
segments (pa = 33.75 mmHg
for arterioles and pv = 16.4
mmHg for venules)

binary trees stemming from (resp. merging into) the four
major branches of the central retinal artery (resp. vein) as
depicted in Fig. 3. For the above-described domain geom-
etry and vascular architecture, we consider two different
modeling choices for the pressure distribution along the net-
work:

1. the pressure is constant in arterioles and venules, pa =
33.75 mmHg and pv = 16.4 mmHg, respectively.
Results are reported in Fig. 9;

2. the pressure decreases linearly along the network accord-
ing to the Poiseuille law (6), see also Table 1. Results are
reported in Fig. 10.

Figures 9 and 10 show similar pressure and velocity ranges
when compared with the reference model with the four arcs,
see Fig. 7. Velocities are higher when the pressure is assumed
constant along the vascular network, see Fig. 9, when com-
pared to the casewith linear pressure distribution, see Fig. 10.

It is very encouraging to find that reasonable pressure and
velocity fields are obtained not only in the simple case of the
four arcs, but also when a more complex vascular network
is considered. The next step would be considering image-
based vascular network to test the viability of patient-specific
simulations. Photographically acquired fundus images are
widely used in the clinical setting to help determine the health
of the retina, and to track retinal changes over time. Support
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Fig. 10 Pressure fields in
mmHg (left) and velocity fields
in mm/s (right) for arterial,
capillary and venous level.
Binary tree with linear pressure
distribution in each generation

for the automatic processingof fundus images is available in a
variety of computational environments, including MATLAB
(Mittal 2015), ImageJ (Abramoff et al. 2008) and ITK (Yoo
et al. 2002).

An example of image-based vascular network recon-
structed by our group using matched filters and local entropy
thresholding, as in Chanwimaluang and Fan (2003), is
reported in Fig. 11. Image extraction was performed on
retinal images obtained from those archived in the DRIVE
database and represents images from diabetic subjects (Staal
et al. 2004). In order to integrate patient-specific vascular
networks extracted from images into the retinal perfusion
model two steps must still be completed. The algorithm is
currently being extended to distinguish between arterioles

Fig. 11 Vascular extraction: original and extracted image

and venules as required for simulations (Saeza et al. 2012).
Once acquired, the extracted vascular geometry must then be
mapped to the curved retinal surface.
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6 Conclusions and future perspectives

We have developed a computational framework to analyze
the effect of ocular shape and vascular architecture on the
retinal blood perfusion. The model predictions show that
changes in ocular shape induce non-uniform alterations of
pressure and velocity in the retina. In particular, we found
that (i) the temporal region is affected the less by changes
in ocular shape and that (ii) the barrel shape departs the
most from the hemispherical reference geometry in terms of
associated pressure and velocity distributions in the retinal
microvasculature. These results support the clinical hypoth-
esis that alterations in ocular shape, such as those occurring
in myopic eyes, might be associated with pathological alter-
ations in retinal hemodynamics. Physiologically reasonable
results are also obtained in the case of more complex vas-
cular geometries when the pressure is assumed to decrease
linearly along the network. Thus, the computational frame-
work developed in this paper might be useful for the design
of more accurate theoretical and clinical studies taking into
account image-based patient-specific ocular and vascular
geometries.

The results presented in this paper encourage further
investigation of the model from both the mathematical
and computational viewpoints. Mathematically, the model
parameter space comprises eight parameters when three hier-
archical levels are considered, namely Ga, Gv, Ki and αi ,
with i = 0, 1, 2. It would be very interesting to formally
study the sensitivity of retinal hemodynamics on these para-
meters.

We remark that our numerical method computes blood
pressure as primal variable. However, the measurement
devices currently available permit measurement of blood
velocity and not pressure. Computationally, the velocity can
be obtained from the computed pressure in our current formu-
lation. However, such a computation would result in loss of
an order of accuracy (piecewise linear pressures will result in
piecewise constant velocities). A better alternative, and one
thatwe intend to pursue in future, is to solve amixed formula-
tion of the problem. This will allow us to formulate and solve
for pressure and velocity simultaneously. All the computa-
tional and theoretical tools needed for such an approach exist
for standard Poisson equation andwill require some develop-
ment tomake those suitable for the hierarchicalmodel thatwe
are solving. In particular, it is not known how the stability of
numerical methods for the spatial part of the discretization
will interact with the stability of the θ variable discretiza-
tion when mixed methods are used. Other possible future
enhancements include the use of higher-order finite elements,
time-dependent sources and the use of an anisotropic, spa-
tially varyingpermeability tensor. The enhancements relating
to permeability tensor may require new developments in the
numericalmethodsweused. For example, the stiffnessmatrix

will need to be computed taking into account the variability
in the permeability tensor.
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