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Some Linear Algebra

In the wavefunction/state vector formulation of

quantum mechanics, wavefunctions between two

times (0 and t) are related by a linear Unitary oper-

ator:

A(t)ψ(0) = ψ(t), A(t) ∈ U(V )

Where U(V ) is the set of unitary operators acting
on the Hilbert space V. Meanwhile in classical me-

chanics, states in linear phase spaces evolve by lin-

ear symplectomorphisms, in the lie group Sp(2n, V ).
This time V is a real vector space of dimension 2n,

and the operators are required to preserve a sym-

plectic form rather than a Hermitian form. In finite

(n) dimensions, the Hermitian form H’s action can

be expressed as the matrix product:

(ψ, φ) = ψTQφ = ψTφ,Q = I

ψ =

x1 + ip1
...

xn + ipn

, φ =

x′
1 + ip′

1
...

x′
n + ip′

n


(ψ, φ) =

[
x1 + ip1 · · · xn + ipn

] x′
1 − ip′

1
...

xn − ip′
n


= (x1x

′
1 + p1p

′
1 + · · · + xnx

′
n + pnp

′
n) + i(p1x

′
1 − x1p

′
1 +

· · · + pnx
′
n − xnp

′
n)

However when written as a 2n dimensional real

vector space, the real part of the hermitian form re-

sembles the dot product while the imaginary part is

the symplectic product in question:

ψR =


x1
...

xn
p1
...

pn

, φR =


x′

1
...

x′
n

p′
1
...

p′
n


ψTRφR = (x1x

′
1 + p1p

′
1 + · · · + xnx

′
n + pnp

′
n)

ω(ψR, φR) = ψTR



0 0 · · · 0 −1 0 · · · 0
0 0 · · · 0 0 −1 . . . 0
... ... . . . ... ... . . . . . . ...

0 0 · · · 0 0 · · · 0 −1
1 0 · · · 0 0 0 · · · 0
0 1 . . . 0 0 0 · · · 0
... . . . . . . ... ... ... . . . ...

0 · · · 0 1 0 0 · · · 0


φR

= ψTR

[
0n −In
In 0n

]
φR = ψTRJ2nφR

Where 0n is the n×nmatrix of zeroes, and In is the
n × n identity. The matrix J2n only makes sense in

even dimensions, which ties it to linear algebra with

complex numbers - it is called the symplectic form

interchangeably with the binary function ω. Imme-
diately it follows that the unitary group is an inter-

section:

U(n) = Sp(2n) ∩O(2n)

Known as the two-out of three property (Sepanski,

Compact Lie Groups).

Symplectic Geometry and Classical
Mechanics

Orthogonal matrices, those that preserve the dot

product are also known as rotations. While rota-

tions preserve the length ψTRψR = (OψR)T (OψR) for
any ψR ∈ R2n, there is no analogue of length for

the Symplectic product ω(−,−) since it is antisym-
metric (ω(ψR, ψR) = 0). The value of the Symplectic
product shown previously can be seen as a sum of

2 × 2 determinants. It is also important that ω(−,−)
”knows” about the division into the x and p coordi-

nates by swapping them:

ω(ψR,−) =
[
p1 · · · pn −x1 · · · −xn

]
The geometrical meaning becomes clear when con-

sidering real-valued functions on R2n, interpreting

their values as energy associated to the state ψR -

positions and momenta at an instant in time. E.g.

on R2:

H(x, p) = 1
2
x2 + p2

2m
, dH = xdx + p

m
dp

Interpreting the differential as a row vector:[
x p

m

]
= ω(dψR

dt ,−)

Defining the column vector solution dψR
dt to this

equation to be the time derivative of the state,

treated as a vector field:

ψR =
[
x
p

]
7→ dψR

dt
=
[
− p
m
x

]

This more clearly shows the function H to be the

energy of an oscillating mass on a spring with mass

m. The Symplectic form plays the role of con-

verting energy functions into time evolution vector

fields, and their time evolution can be interpreted as

preserving volumes in position-momentum phase

space. Finally, vector fields can be interpreted as

differential operators:[
− p
m
x

]
→ − p

m
∂
∂x + x ∂

∂p = D

Permitting time-evolving not just points, but func-

tions too:

etDf (x, p, 0) = f (x, p, t)

or in one dimension, Taylor expanding:

e−c ddxf (x) = f (x− c)

Symplectic Numerical Integration

Given a starting point (x0, y0) and a slope field dy
dx =

f (x, y), the function y(x) satisfying y(x0) = y0 fol-

lowing the slopes is simply approximated with the

Euler step method:

y1 = y0 + hf (x0, y0), · · · , yn+1 = yn + hf (xn, yn)
With uniform x-step sizes h, xn = x0 + nh and yn is
the approximate height of the graph at xn. Applied
to the oscillator:

xn+1 = xn − h∂H∂p (xn, pn)
pn+1 = pn + h∂H∂p (xn, pn)

The green trajectory is the exact solution, red is

the curve constructed from Euler steps with step

size 0.1. Evidently Euler’s method does not respect

the necessary conservation of energy. A different

method designed to preserve the Symplectic form

is needed:

pn+1 = pn − h∂H∂x (xn, pn)
xn+1 = xn + hpn+1

m = xn + hpnm − h2∂H
∂x (xn, pn)

zoomed in to show accuracy

This time, the new momentum must be computed

first since the new position depends on it. Write a

matrix representing the step:[
xn+1
pn+1

]
=
[
1 − h2/m h/m

−h 1

] [
xn
pn

]
Since in two dimensions, the Symplectic condition is

preserving a single determinant/area, whether this

matrix M is Symplectic can be checked more sim-

ply if its determinant is 1, rather than plugging into

ω(M(−),M(−)) = ω(−,−):
MTJ2M = J2

Deutsch’s Algorithm

Since unitary matrices are a subset of symplectic

matrices, the unitary ”gate” operations of a quantum

computer may be differentiated by a time parame-

ter to give an analogue of the energy (Hamiltonian)

vector field. 45-degree rotation is a unitary matrix:

H =
[
cos(tπ4) −sin(tπ4)
sin(tπ4) cos(tπ4)

]
, t = 1

Which will be referred to as H from now. Also

known in quantum computing as the Hadamard

gate, we can differentiate it at 0 to obtain the matrix

of a Hamiltonian vector field over C2:[
c1
c2

]
7→

[
0 −π

4
π
4 0

] [
c1
c2

]
=
[
−π

4c2
π
4c1

]
= d

dt

[
c1
c2

]
Symplectic integration from time 0 to 1 recovers the

Hadamard operator. Deutsch’s Algorithm is repre-

sented by the following schematic:

H⊗n
[
1
0

]⊗n

ψ

H
[
0
1

]
φ

Uf

out

ignored

H result

Some notation:

[
1
0

]⊗n
represents a 2n-tuple with

only one nonzero component, similarly taking H⊗n

represents a 2n × 2n-block matrix whose compo-
nents are products of components of copies of the

matrix H . Basis-independently, these are thought
of as tensors, but the block representation makes

the unitarity of the operators involved manifest.

The operator Uf depends on a boolean function
f (x1, · · · , xn) → {0, 1} of n variables. Each element

of the tensor basis is some list of products of

[
1
0

]
and

[
0
1

]
, Uf sends such a product Ψ to −1f (b(Ψ))Ψ.

Extending it to all linear combinations of basis prod-

ucts defines the operator on the total space C2n+1.

The input b(Ψ) is a list of 1’s and 0’s correspond-
ing to the number and ordering of each basis vector

in the constituent product. The ultimate output of

this algorithm is a probability distribution that helps

to decide if the function f is ”balanced,” outputting
0 for equally many inputs as 1.

To interpret the circuit as a Symplectic-mechanical

system, we can find the Hamiltonian vector

field/derivative matrix corresponding to each uni-

tary operator. Time can be thought of as passing to

the right, where after each application of a unitary

operator, one unit of time has passed, and a new

vector field takes over.

This way, we can verify properties of classical logic

circuits with continuous time mechanical systems.

Future Directions

In all of the cases here, linear Symplectic mappings

were considered - however more general area pre-

serving mappings exist on other geometries, where

both the geometry and the maps are nonlinear. In

quantum mechanics and computing, only the unit

sphere S3 matters as the operators are linear, how

the unit sphere maps to itself (length is preserved

under unitaries so it must) determines the map for

all ofC2. It can be reduced even further, to the two-

dimensional sphere S2 by also considering linearity

under multiplication by unit complex numbers, this

reduction itself has an interesting geometry called

the Hopf Fibration.

S1 ↪→ S3 → S2

The phase spaces arising in ordinary mechanics are

quite different, they extend to infinity due to the ve-

locity tangent spaces of position configurationman-

ifolds being linear - for the pendulum where po-

sitions are on a circle, this Symplectic manifold is

an infinite cylinder. Any manifold whose tangent

spaces at each point have a Symplectic form are

such manifolds, but S2 is an example where it itself

is not the tangent space of another manifold - it is

closed and finite. This result specializes tomanifolds

whose tangent spaces are complex vector spaces,

which is the case for S2, as well as manifolds associ-

ated to parameterized families of probability distri-

butions.

There is more geometry in quantum mechanics,

S2 was an example of the projective space of ”true”

states in C2, but we can consider it for any Cn+1 as

CPn. Projectively, the tensor product between two
different complex vector spaces spaces becomes:

CPn × CPm → CPnm+n+m

This is known to algebraic geometers as the Segre

embedding, it comes with a great deal of hidden

combinatorial structures coming from its polynomial

construction.

Symplectic evolution appears in such other objects

of physics as:

the Electromagnetic Field

Gauge Fields

Fluids

Plasmas

Quantum Fields

The power of the Symplectic method comes from

its utilization of symmetry, indeed all Symplectic

manifolds with parameterized families of transfor-

mations comes with a ”momentum mapping” which

in the case of Cn maps the states to probability dis-

tributions. This will be a powerful tool for compar-

ing linear problems to nonlinear ones, and under-

standing the nature of computation geometrically,

and physical systems.
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