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A Brief History

Carl Runge was a German mathematician born in 1856. He studied mathematics

and physics in Berlin and later became a professor of mathematics at the University

of Hanover. Runge made significant contributions to numerical analysis, including

the development of the Runge-Kutta method, a family of numerical integration

methods used to solve ordinary differential equations.

Martin Kutta was another German mathematician who independently developed

a similar family of numerical integration methods around the same time as Runge.

The methods developed by Kutta are also now known as Runge-Kutta methods.

Kutta was born in 1867 and studied mathematics and physics in Vienna. He later

became a professor of mathematics at the University of Brno in what is now the

Czech Republic.

Nathan Newmark was an American structural engineer who was born in 1910. He

studied civil engineering at the University of Illinois and later became a professor of

civil engineering at the same institution. Newmark made significant contributions

to the field of structural dynamics, including the development of the Newmark

method, a numerical integration method used to solve the equations of motion for

large-scale structural systems under dynamic loading conditions.

Comparing The Methods

1. Purpose: The Runge-Kutta method is a general-purpose numerical integration

method for solving first-order ordinary differential equations (ODEs), while the

Newmark method is a specific numerical method used for solving second-order

ODEs of motion in structural dynamics and related fields. While both methods can

be used to solve differential equations, they are often applied to different types of

problems.

2. Accuracy: Both methods are known for their accuracy, but the Runge-Kutta

method is generally more accurate than the Newmark method due to its higher

order of approximation. The Runge-Kutta method can achieve a high level of ac-

curacy by using higher-order polynomials to approximate the solution at each time

step, but this comes at the cost of increased computational complexity.

The Newmark method is a second-order method, meaning that it uses a quadratic

approximation to the solution at each time step. This results in a slightly lower

level of accuracy than the Runge-Kutta method but allows for faster computation

times.

3. Stiffness: Both methods can handle stiff equations, but they may require differ-

ent approaches to ensure numerical stability. The Runge-Kutta method can handle

stiff equations by using smaller step sizes, which can increase the computational

time. The Newmark method is particularly useful for problems where the stiffness

matrix and mass matrix are constant.

4. Computation: The Runge-Kutta method requires more computational re-

sources, as it involves solving multiple differential equations at each time step. The

computational complexity of the Runge-Kutta method increases with the order of

the method used. In contrast, the Newmark method requires less computational

resources, as it involves solving a single set of equations at each time step.

5. Stability: The Runge-Kutta method is conditionally stable, meaning that the time

step size must be sufficiently small to ensure stability. The Runge-Kutta method

can become unstable if the time step is too large, leading to numerical errors and

instability in the solution.

The Newmark method is unconditionally stable, meaning that it can handle larger

time step sizes without sacrificing stability. This makes the Newmark method par-

ticularly useful for problems with long time scales or where the computational cost

of small time steps is prohibitive.

My Experiment

To create a fair comparison which was easy to understand, I used python to define

a system of masses and springs of magnitude ”n”. I also included a changeable

damping or friction factor. Then, I programmed the two methods to solve for the

positions and velocities of the masses. Additionally, I included the energy equation

of the spring-mass system under each method to give additional insight on how

these methods compare. I made the iterations ”N”, and step size ”h”, definable

by the user. Spring-mass systems are plentiful in real life and are a good way to

visualize the functionality of these solver methods.

Figure 1. Defining the Mass, Spring, and Damper matrices. Setting the initial position (u0), initial

velocity (v0), and initial acceleration (a0). Defining the acceleration equation.

Figure 2. The Runge-Kutta solver with energy equation.

Figure 3. The Newmark solver with energy equation.

What I found

Three graphs are generated from my python code every time it is ran. The first

graph pertains to the Newmark method. The second graph pertains to the Runge-

Kutta method. The third graph is a graph of the energy data generated by both the

Newmark and Runge-Kutta methods.

In the Newmark graph, the red line shows the position, and the blue line shows the

velocity of one of the masses in the system. In the Runge-Kutta graph, the yellow

line shows the position, and the green line shows the velocity of the same mass.

In the energy graph, the purple line is the system energy according to the Newmark

solver, and the cyan line is the system energy according to the Runge-Kutta solver.

Friction VS No Friction

Figure 4. Without Friction Figure 5. With Friction

With a step size of 1e-4 and 50,000 iterations, both solvers worked very well. The

position and velocity of the block were consistent between the two methods, and

the energy of the system was as well. I found it very worrying at first to see the

energy of the system grow over time. ”Perhaps an issue with my code” I thought.

It was not. Don’t let that steep incline fool you, the energy grows less than 0.1

over 50,000 iterations. The reason behind this is the error of the solver as the ”h”

value is always overshooting.

Finding The Breaking Point

I had proven the two methods can give identical results. Next I set out to

find out where they differ. I tried every possible combination of initial values,

mass/spring/dampermatrices, and increased the iteration count until my computer

could not handle it. None of those evoked a noticeable difference. What did work

was increasing the ”h” step size value. Thus far I had been using 1e-3 at most.

At 1e-1, the Runge-Kutta began showing inaccurate values for system energy. By

0.4 the difference between Newmark and Runge-Kutta was immense. This was

without tampering with any other variables.

Figure 6. 0.1 Step Size Figure 7. 0.4 Step Size
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