
MAT 460: NUMERICAL DIFFERENTIAL EQUATIONS

Mathematical Modeling of SpaceX’s Falcon
9 Booster Hoverslam Landing

Wakeley Banker and Chase Francis

May 6, 2022

ABSTRACT

This paper will examine various numerical methods to model the Hoverslam maneuver
performed during the landing of a Falcon 9 first stage rocket booster. The 2nd order or-
dinary delay differential equation with constraints consists of gravity, air resistance, and
thrust terms. It will be modeled using Runge-Kutta, Euler Implicit, Explicit, and Symplectic.
The differential equation represents the vertical acceleration of the rocket booster as it
approaches sea level. The numerical methods employed will be tested with varying step
size and presented to show that they are suitable methods to model this special type of
differential equation application. They will be used to find the optimal ignition time of the
booster, from a known starting position, in order to land with a vertical velocity (ḣ) and
height (h) of 0 with respect to sea level.

1

CONTENTS

1 Introduction 4
1.1 Background . 4
1.2 Differential Equation . 4
1.3 Assumptions . 4
1.4 Evaluation and Constraints . 5

2 Numerical Methods 5
2.1 2nd Order Differential Equation . 5
2.2 Symplectic Euler Method . 6

2.2.1 Conversion from 1st to 2nd Order Compatibility 6
2.2.2 Improvements to Explicit Euler Scheme (Symplectic) 6

2.3 Implicit Euler Method . 7
2.3.1 Conversion from 1st to 2nd Order Compatibility 7

2.4 Runge-Kutta Method . 7
2.4.1 Conversion From 1st To 2nd Order Compatibility 7

3 Stability and Error 8
3.1 Euler Stability . 9
3.2 Runge-Kutta Stability . 9

4 Method Testing and Comparison 9

5 Modeling and Numerical Simulation 10
5.1 Python Set-Up . 10
5.2 Comparison . 11
5.3 Numerical Simulation . 11

6 Conclusion 11

7 Appendix 12

8 References 31

LIST OF FIGURES

7.1 Modeling Plots for ρai r , g, and vter m . 12
7.2 Modeling Plots for booster thrust . 12
7.3 Modeling Comparison for Hoverslam Maneuver 13
7.4 Time vs. Height Hoverslam Maneuver (Runge-Kutta) 13
7.5 Time vs. Height Hoverslam Maneuver (Euler Symplectic) 14
7.6 Test Case: Simple Harmonic Motion . 14
7.7 ti g ni te Optimization Table for step size of 0.02 15
7.8 ti g ni te Optimization Table for step size of 0.05 15

2

7.9 ti g ni te Optimization Table for step size of 0.1 . 15

LISTINGS

1 Modeling Plots Code . 15
2 Test Case: SHM Code . 19
3 MAPE and Step Size (SHM) . 23
4 Runge-Kutta and Euler Symplectic Hoverslam Maneuver Modeling/Numerical

Simulation Code . 23

3

1 INTRODUCTION

1.1 BACKGROUND

SpaceX is an American aerospace company founded in 2002 with the primary goal of advanc-
ing space travel technologies, and commercializing space flight. In order to accomplish this
goals in the future, the company prioritizes the economic side of space travel. A decrease
in cost per launch will result in more launches, and more availability to the public. Since
2015, SpaceX has been performing Falcon 9 rocket booster landings. This entails the booster
detaching from the rocket with some remaining fuel and returning back to earth to land
upright for future use. The Hoverslam maneuver is the method employed and coined by
SpaceX to successfully land the boosters. It entails the free fall of the booster in an upright
manner until it is ignited with the goal of achieving a vertical velocity of 0 m/s when it
reaches the surface of the Earth. This method has resulted in 89 successful first stage booster
landings since its implementation and it only costs the company 62 million USD to launch.

1.2 DIFFERENTIAL EQUATION

The second order delay differential equation with constraints to model the vertical accelera-
tion of the booster is given as

ḧ = −GM⊕
(R⊕+h)2

+ 1

2m(t)
ρCD Aḣ2 − T

m(t)

ḧ =Gr avi t y(h)+ Ai r Resi st ance(t ,h, ḣ)+T hr ust (t)
(1.1)

where G, M⊕, and R⊕ are astronomical coefficients associated with the Earth in the Gravity
term in this situation. For the Air Resistance term, ρ(h) represents the density of air as a
function of vertical height, and CD is the drag coefficient. The Falcon 9 booster has a circular
cross-sectional area with a radius of 1.83m and it’s mass varies with the function m(t) shown
below in equation 1.2. Finally, the Thrust term consists of T, which is the Thrust produced
by the booster in kN.

m(t) = md +mp −b(tbur ni ng) (1.2)

The mass of the booster varies as a function of time while the booster is producing thrust
and consuming the mass of the propellant. In the above equation md is the dry mass of
the booster and mp is the mass of the propellant. The variable b is the rate of propellant
consumption in kg/s and tbur ni ng is the elapsed time since the booster engine has been
ignited. tbur ni ng is derived as t - ti g ni te , where t is the overall time since t0 at which the
velocity (ḣ) and height (h) with respect to sea level is known.

1.3 ASSUMPTIONS

The assumptions made during the landing will be that the booster will be landing on Earth.
The values for G, M⊕, and R⊕ will all be unique to Earth and will be different for other

4

planets. For this situation it will be assumed that the dry mass of the booster is 27,200kg.
The thrusters will be burning fuel at a rate of 1480kg/s and the thrust created will be 7600kg.
While the booster is falling the drag coefficient will be assumed to be 0.5. For the purpose
of this modeling the assumption will be made that the throttle will remain constant and
that all motion is directed toward the center of the Earth. Finally, the starting position of the
booster is 150km above the surface of the Earth with a velocity of -2km/s.

1.4 EVALUATION AND CONSTRAINTS

This differential equation has complicated boundaries and constraints that vary depending
on the test. The differential equation is described as a delay differential equation because
the final term (Thrust) is only added to the equation for t ≥ ti g ni te . Also, the mass (m(t))
only varies after the booster has been ignited as well. Next, the boundaries of evaluation. As
stated previously, t0 is the starting position in the flight of the booster. The initial conditions
of ḣ and h are known and serve as the starting point for the numerical methods to begin
their evaluation. The secondary boundary is when the integration should be terminated.
This boundary is determined based on which constraint is violated first. The integration is
to be halted if the ground is reached (h = 0) or if the propellant is exhausted (mp = 0). These
boundaries will vary as the time of ignition is changed to find the optimal ignition time to
achieve a safe and successful landing.

2 NUMERICAL METHODS

2.1 2ND ORDER DIFFERENTIAL EQUATION

The 2nd order differential equation that is used in this situation and throughout mechanics
is of the form:

ḧ = f (t ,h, ḣ), (2.1)

where ḧ(t) is the acceleration, ḣ(t) is the velocity, and h(t) is the position of the object. In
this case of radial fall the motion is going to be 1 dimensional, with h being the vertical
position with respect to the surface of the Earth. The motion is directed inwards towards
the center of the Earth. In order to begin evaluation the initial position, h0 = h(t0), and
velocity, v0 = v(t0) is declared. The complexity of the differential equation is increased
greatly from the generic free fall of a falling mass by the adding of the gravitational potential
of the Earth term and further with adding the air resistance term. These terms coupled with
f changing explicitly with time and height make the process of finding an analytical solution
challenging. The numerical methods that are used in the following sections will use the
initial conditions mentioned previously to model the differential equation in the form of
equation 2.1.

5

2.2 SYMPLECTIC EULER METHOD

2.2.1 CONVERSION FROM 1ST TO 2ND ORDER COMPATIBILITY

The symplectic or semi-implicit Euler method is a manipulation of Euler’s method in order
to make it applicable to second-order initial value problems. As shown in equation 2.2,
Euler’s method which he published in 1768, is used to evaluate a first-order differential
equation of the form ḣ = f (t ,h).

hn+1 = hn + f (tn ,hn)∆t (2.2)

In order to manipulate the method a reduction of order approach can be taken. The second
order differential equation of the form shown in equation 2.1 can be represented by

u = ḣ

u̇ = f (t ,h, ḣ)
(2.3)

which, is now a system of two first order differential equations that are equivalent to the
single second-order differential equation. The initial conditions described previously are
now changed to

h(t0) = h0

u(t0) = u0
(2.4)

If a graph is plotted of time vs. height starting from t0 and h0, the slope of the line is u0. Next,
if a time of t0+∆t is defined on the horizontal axis and its corresponding h value is found, the
line segment between (t0,h0) and (t0+∆t ,h(t0 +∆t)) is the approximation to the solution. It
has a slope of u0. Then, if a graph of time vs. u is created with (t0,u0) and (t0+∆t ,u(t0 +∆t))
plotted with a slope of f (t0,h0,u0). The line segment is the approximation of the solution
between t0 and t0 +∆t . This yields equations 2.5,

t1 = t0 +∆t

h1 = h0 +∆tu0

u1 = u0 +∆t f (t0,h0,u0)

(2.5)

which are then used to iterate. The values found will then be used to find t2, h2, and u2. The
forward or Explicit Euler method in standard form is shown below and starts from the initial
values of h0 and ḣ0.

hn+1 = hn + ḣ0∆t ,

˙hn+1 = ḣn + f (tn ,hn , ḣn)∆t
(2.6)

2.2.2 IMPROVEMENTS TO EXPLICIT EULER SCHEME (SYMPLECTIC)

The forward Euler scheme that was derived in the previous section is an example of an
explicit scheme. An explicit scheme finds values at a later time based on the values found at

6

previous times. It estimates hn+1 and ḣn+1 at the time tn +∆t , by using ḣn and f (tn ,hn , ḣn)
found at the previously time tn . This method can be improved by combining both explicit
and implicit schemes. An implicit scheme finds a solution by solving an equation at the
current time and a later time. These methods are both used extensively in numerical
methods. However, the approximation can be improved by combining the two types. This
is called a symplectic method and it allows for the limiting of error by being phase space
preserving. The accumulated error in the approximation doesn’t grow over time as a result
of this method. The symplectic Euler scheme is shown below in equation 2.7.

ḣn+1 = ḣn + f (tn ,hn , ḣn)∆t

hn+1 = hn + ˙hn+1∆t
(2.7)

The top equation is the explicit Euler forward method derived in Section 2.2.1 and the bottom
equation is the implicit Euler equation used to find the height hn+1 using the velocity ḣn+1

that is already found at that time using the explicit equation. This symplectic Euler method
will be the first numerical method employed to model the Hoverslam maneuver.

2.3 IMPLICIT EULER METHOD

2.3.1 CONVERSION FROM 1ST TO 2ND ORDER COMPATIBILITY

The Euler method has now been derived to be applicable to 2nd order differential equations
in both symplectic and explicit schemes. In this section it will be a fully implicit scheme
of the Euler method also known as the backward Euler method. An implicit scheme that
calculates the system at a future time from the given system at present and future times. The
backward Euler method for first order ODEs is given as:

hn = hn+1 − f (tn+1,hn+1)∆t

hn+1 = hn + f (tn+1,hn+1)∆t
(2.8)

The second order applicable Euler implicit is more complex than the explicit. It can only
be applied by solving two sets of linear equations. The linear system is derived by solving
for hn+1 in the equation hn+1 = hn +∆t Ahn+1. This equation also holds true for ˙hn+1 if you
change all h terms to ḣ terms. These two equations are shown below under equation 2.9.
They are solved each individually in each step and they are an entirely implicit scheme.

[I −∆t A][hn+1] = h

[I −∆t A][˙hn+1] = ḣ
(2.9)

2.4 RUNGE-KUTTA METHOD

2.4.1 CONVERSION FROM 1ST TO 2ND ORDER COMPATIBILITY

The Euler method is one of the simplest methods of solving ordinary differential equations.
It is only first-order accurate, while the Runge-Kutta method is fourth-order accurate. This
higher-order accuracy is computed by estimating the slopes at different times on the interval

7

between t +∆t .These estimates are then combined using a weighted average to achieve a
numerical scheme that is more accurate. The Runge-Kutta scheme for first order differential
equations is given in equation 2.10.

k1 = f (t ,h)∆t ,

k2 = f (t +∆t/2,h +k1/2)∆t ,

k3 = f (t +∆t/2,h +k2/2)∆t ,

k4 = f (t +∆t ,h +k3)∆t ,

h(t +∆t) = h(t)+ 1

6
(k1 +2k2 +2k3 +k4)

(2.10)

In a similar fashion to the Euler method the given Runge-Kutta method above can be
transformed to be applicable to a second order ordinary differential equation. The reduction
of order method can be utilized to represent a second order ODE as two first orders, as
shown in equation 2.3. The following equations make the Runge-Kutta method valid for a
2nd order ODE. They are in the order that they will have to be computed and implemented
into Python and they calculate the k factors to be used.

k1h = f1(tn ,hn , ḣn)

k1ḣ = f2(tn ,hn , ḣn)

k2h = f1(tn + ∆t

2
,hn + ∆tk1h

2
, ḣn + ∆tk1ḣ

2
)

k2ḣ = f2(tn + ∆t

2
,hn + ∆tk1h

2
, ḣn + ∆tk1ḣ

2
)

k3h = f1(tn + ∆t

2
,hn + ∆tk2h

2
, ḣn + ∆tk2ḣ

2
)

k3ḣ = f2(tn + ∆t

2
,hn + ∆tk2h

2
, ḣn + ∆tk2ḣ

2
)

k4h = f1(tn +∆t ,hn +∆tk3h , ḣn +∆tk3ḣ)

k4ḣ = f2(tn +∆t ,hn +∆tk3h , ḣn +∆tk3ḣ)

(2.11)

These k factors are then combined in the weighted average equations shown below.

hn+1 = hn + ∆t

6
(k1h +2k2h +2k3h +k4h)

˙hn+1 = ḣn + ∆t

6
(k1ḣ +2k2ḣ +2k3ḣ +k4ḣ)

(2.12)

3 STABILITY AND ERROR

Stability in mathematics is the condition in which a slight disturbance in a system does not
produce too disrupting an effect on that system. In terms of the solution of a differential
equation, a function f(x) is said to be stable if any other solution of the equation that starts
out sufficiently close to it when x = 0 remains close to it for succeeding values of x. If

8

the difference between the solutions approaches zero as x increases, the solution is called
asymptotically stable. If a solution does not have either of these properties, it is called
unstable.

3.1 EULER STABILITY

The Euler methods are used to evaluate first order differential equations and can be numeri-
cally unstable, especially for stiff equations, meaning that the numerical solution grows very
large for equations where the exact solution does not. This could cause a large error but,
decreasing the step size is one way to minimize the error in the Euler methods. There are
more complicated methods that can achieve a higher stability and more accurate solutions.

3.2 RUNGE-KUTTA STABILITY

The Runge-Kutta method is a fourth order accurate numerical method. This means the
error of the method doesn’t amplify as easily as the Euler method. The instability of explicit
Runge–Kutta methods motivates the development of implicit methods. The advantage of
implicit Runge–Kutta methods over explicit ones is their greater stability, especially when
applied to stiff equations. The stability function of an explicit Runge–Kutta method is a
polynomial. The accuracy of the Runge-Kutta method is much higher compared to the Euler
methods and allows for a method that can model more complicated differential equations.

4 METHOD TESTING AND COMPARISON

As discussed in the previous sections each numerical method has its limitations and em-
ploys a different approach to modeling a ordinary differential equation. In this section the
numerical methods are going to be tested for a second order differential equation that has
an analytical solution. This will provide a basis for the accuracy comparison. Also, the graph
will give a visualization of the error and limitations of each.

The test case that is going to be used for the comparison is the displacement and velocity
of simple harmonic motion. The 2nd order differential equation is rather rudimentary and
will provide a simple and clean visualization. The ODE is shown below,

ẍ = (− k

m
)x (4.1)

where, k is the spring constant in Newtons/meter and m is the mass in kilograms. The
variable x is the position and ẍ is the 2nd time derivative of x, which is the acceleration. The
analytical solution is common knowledge and it is shown below for the position and velocity.

x = x0cos(

√
k

m
t)

ẋ =−x0si n(

√
k

m
t)

(4.2)

9

Using Python, the analytical solutions were graphed on separate graphs for position and
velocity. Next, all four of the methods were coded to work for two functions. The first func-
tion (f1) was the velocity (v) and the second function (f2) was the acceleration differential
equation. The 2nd order applicable methods derived in section 2 were all set to various step
sizes to test the accuracy of the methods. Finally, they were all overlaid onto the graphs with
the analytical solution for the same step size and the graphs are shown in Figure 7.6 in the
appendix.

The test case confirmed that Runge-Kutta is the most accurate model tested. The fourth
order accurate Runge-Kutta model (red) is almost perfectly overlaid onto the analytical
solution (green) line in both graphs. Mean absolute percentage error or MAPE is a measure
of prediction accuracy of a forcasting method in statistics. This is commonly used with
machine learning and predicting models.The equation is shown below and it is modeled in
Python for each method,

M APE = 1

n

n∑
t=1

| At −Ft

At
| (4.3)

where, n is the number of samples taken for the method (domain/step size), At is the
analytical value, and Ft is the predicted value. Runge-Kutta had a mean percentage error of
7.18X 10−9 with a step size of 0.1. The Euler Symplectic modeled the differential equation
the second best with a MAPE of 7.18X 10−6. It proved to be the most accurate Euler method
with Euler implicit being a severe underestimation (MAPE = 3.47X 10−3) and explicit a severe
overestimation (MAPE =5.63X 10−3). The two primary methods of modeling going forward
were Euler Symplectic and Runge-Kutta because their MAPE values are shown to be many
times better.

5 MODELING AND NUMERICAL SIMULATION

5.1 PYTHON SET-UP

The methods that have been derived, analyzed, and tested are now being applied to the
2nd order delay differential equation that models the vertical acceleration of the Falcon 9
first stage booster Hoverslam Landing maneuver. The differential equation was modeled
in Python using a plethora of functions for all four methods. The top two methods Runge-
Kutta and Euler symplectic are possible to visualize and the code is detailed below and in
the appendix under Listing 4. These functions include gravity(h), rho air(h), mass(t), fuel
amount term(t) and Thrust(t). These functions were then referenced in a function called
hddot(t,h,hdot), which combined them to represent the differential equation. It had an
if-else statement built in to only add the Thrust term for when t > ti g ni te . This was then
run through the Runge-Kutta and Euler symplectic functions in hddotwithRkn(dt) and
hddotwithEulerSymplectic(dt). These functions had a while loop that only ran the code for
when the height of the booster is greater than zero and mp > 0. It then stored the data in a
three column list (t,h,hdot), graphed time vs, height, and graphed height vs vertical velocity
for each function.

10

5.2 COMPARISON

In order to compare the two models they were overlapped on the same graphs and compared
with varying step sizes and ignition times. It became very obvious that the Runge-Kutta
could handle the rapid changes in the position of the booster when the maneuver took place
and Euler symplectic could not. The graphs of the motion are shown in the appendix under
Figure 7.3. The numerical methods both have a step size of 0.02 and an ignition time of
35.88 seconds. In the appendix under Figures 7.7-7.9 there are tables that compare the step
size and ignition time for each method.

5.3 NUMERICAL SIMULATION

In order to make the visualization more clear, an animation was created in Python using
matplotlib.animation. The animation was created for both Euler Symplectic and Runge-
Kutta. The animation is created using similar functions to update the frame. However, the
data was split in order to get a functioning visual. The animation is shown for about the last
20 seconds of rocket booster motion. It plots time vs. height and the rocket is represented by
the circle. The images of the overall motion of the rocket are attached in the appendix under
Figures 7.4 and 7.5.

6 CONCLUSION

As predicited, the Runge-Kutta method outperformed all other numerical methods. It
showed the most competent results in trying to model the quickly changing motion of the
Hoverslam maneuver. The best trial is shown in Figure 7.7 for an ignition time of 35.88
seconds. The Runge-Kutta method shows a velocity of 0m/s at a height of 2.6m with a step
size of 0.02. These are almost optimum landing parameters for landing the boosters and the
best results that were computed. The rocket then has a positive velocity and gains altitude
before mp = 0 due to the excess fuel left in the booster. So, the engine can be throttled down
at that time to perform a safe landing. This trial is the one graphed in all motion figures for
the rocket and illustrate this flight path. However, when the Euler symplectic model gets
close to a height of 0m the rapid changes prove to be too much for the numerical method to
adapt with because it is only first order accurate.

The Figures 7.7-7.9 illustrate the overall stability of the methods as well. It is shown that
both methods can be extremely volatile and vary greatly when just the step size or time is
changed slightly. The second half of Figure 7.7 shows the height when the velocity is 0m/s
to show just how close the booster was to landing safely. The explicit Runge-Kutta method
proved to be the best method out of the four employed. However, it could get out performed
by another high order accurate method or an implicit Runge-Kutta scheme in the future.

11

7 APPENDIX

Figure 7.1: Modeling Plots for ρai r , g, and vter m

Figure 7.2: Modeling Plots for booster thrust

12

Figure 7.3: Modeling Comparison for Hoverslam Maneuver

Figure 7.4: Time vs. Height Hoverslam Maneuver (Runge-Kutta)

13

Figure 7.5: Time vs. Height Hoverslam Maneuver (Euler Symplectic)

Figure 7.6: Test Case: Simple Harmonic Motion

14

Figure 7.7: ti g ni te Optimization Table for step size of 0.02

Figure 7.8: ti g ni te Optimization Table for step size of 0.05

Figure 7.9: ti g ni te Optimization Table for step size of 0.1

1 import numpy as np
2 import scipy
3 import matplotlib.pyplot as plt
4 from astropy.constants import G,M_earth ,R_earth
5

6 #Modeling Plots for refrences and understanding of the mechanics that
go into the differential equation

7 #Global Variables
8 g = 9.81
9 def main():

10 a = 0
11 b = 150000
12 n = 50
13

14 h = np.linspace(a, b, n)
15 ygrav = Gravity(h)
16 yrhoair = rho_air(h)
17 yterminalvelocity = -1 * terminal_velocity(h)

15

18

19 plt.subplot(3, 1, 1)
20 plt.title("Modeling Plots")
21 plt.plot(h, ygrav , label=’Accel of GRavity fn of h’)
22 plt.axvline(x=100000 , color=’r’)
23 plt.legend(loc= ’lower right ’ , bbox_to_anchor =(0.5 , -0.15), ncol

=2)
24 plt.grid(True)
25 plt.xlabel(’h’)
26 plt.ylabel(’Acceleration [m/s^2]’)
27

28 plt.subplot(3, 1, 2)
29 plt.plot(h, yrhoair , label=’rho air as a fn of h’)
30 plt.axvline(x=100000 , color=’r’)
31 plt.legend(loc="lower right", bbox_to_anchor =(0.5, -0.15), ncol =2)
32 plt.grid(True)
33 plt.xlabel(’h’)
34 plt.ylabel(’Rho [kg/m^3]’)
35

36

37 plt.subplot(3, 1, 3)
38 plt.plot(h,yterminalvelocity , label=’terminal velocity as a fn of

h’)
39 plt.axvline(x=100000 , color=’r’)
40 plt.legend(loc="lower right", bbox_to_anchor =(0.5, -0.15), ncol =2)
41 plt.grid(True)
42 plt.xlabel(’h’)
43 plt.ylabel(’terminal velocity [m/s]’)
44 plt.show()
45

46 c = 0
47 d = 30
48 n = 60
49 t_burning = np.linspace(c,d,n)
50 ymass = mass(t_burning)
51 ydrymass = 27200 * ((t_burning)**0)
52 boosterThrust = Thrust(t_burning)
53

54 plt.subplot(2, 1, 1)
55 plt.title("Modeling Plots for t_burning")
56 plt.plot(t_burning , ymass , label=’mass of the booster as a fn of

time’)
57 plt.plot(t_burning , ydrymass ,label = ’dry mass of the booster ’)
58 plt.axvline(x=20.27 , color=’r’)
59 plt.legend(loc="lower left", bbox_to_anchor =(0.5, -0.15), ncol =2)
60 plt.grid(True)
61 plt.xlabel(’time burning ’)
62 plt.ylabel(’mass [kg]’)
63 #Intersection at 20.27s
64

65

66 plt.subplot(2, 1, 2)

16

67 plt.plot(t_burning , boosterThrust , label=’Thrust ’)
68 plt.axvline(x=20.27 , color=’r’)
69 plt.legend(loc="upper right", bbox_to_anchor =(0.5, -0.15), ncol =2)
70 plt.grid(True)
71 plt.xlabel(’time burning ’)
72 plt.ylabel(’ Thrust [kN/kg]’)
73

74 plt.show()
75

76 e = 0
77 f = 500
78 n = 50
79 t = np.linspace(e,f,n)
80 yposition = vertical_position(t)
81

82 plt.subplot(3, 1, 1)
83 plt.title("Modeling Plots for time")
84 plt.plot(t, yposition , label=’position of object no AR’)
85

86 plt.axvline(x=64.5 , color=’r’)
87 plt.legend(loc="lower left", bbox_to_anchor =(0.5, -0.15), ncol =2)
88 plt.grid(True)
89 plt.xlabel(’time [s]’)
90 plt.ylabel(’height [m]’)
91

92 yvelocity = vertical_velocity(vertical_position , t, 0.01)
93 plt.subplot (3,1,2)
94 plt.plot(t, yvelocity , label=’velocity of object no AR’)
95 plt.axvline(x=64.5 , color=’r’)
96 plt.legend(loc="lower left", bbox_to_anchor =(0.5, -0.15), ncol =2)
97 plt.grid(True)
98 plt.xlabel(’time [s]’)
99 plt.ylabel(’velocity [m/s]’)

100

101 yacceleration = vertical_acceleration(vertical_position , t, 0.01)
102 plt.subplot(3, 1, 3)
103 plt.plot(t, yacceleration , label=’acceleration of object no AR’)
104 plt.axvline(x=64.5 , color=’r’)
105 plt.legend(loc="lower left", bbox_to_anchor =(0.5, -0.15), ncol =2)
106 plt.grid(True)
107 plt.xlabel(’time [s]’)
108 plt.ylabel(’acceleration [m/s^2]’)
109

110

111 plt.show()
112 print("DONE ...")
113 def Gravity(h):
114 gravtop = -1*G.value*M_earth.value
115 gravbottom = (R_earth.value + h)**2
116 gravity = gravtop / gravbottom
117 return gravity
118 def rho_air(h):

17

119 return 1.3*np.exp((-h)/ (8.4e3))
120 def mass(t_burning):
121 m_d = 27200
122 m_p = 3.0e4
123 b = 1480
124 t_ignite = 50
125 return m_d + (m_p -(b * t_burning))
126 def Thrust(t_burning):
127 T = 7.6e3
128 return T / mass(t_burning)
129 def terminal_velocity(h):
130 #for full weight of booster
131 mass_total = 57200
132 C_D = 0.5
133 R = 1.83
134 A = np.pi * ((R)**2)
135 vmaxtop = 2*g*mass_total
136 vmaxbottom = rho_air(h)*C_D*A
137 vmax = np.sqrt(vmaxtop/vmaxbottom)
138 return vmax
139 def vertical_position(t):
140 V0y = -2000
141 h0 = 150000
142 return V0y*(t) - (0.5*g*(t)**2) + h0
143 def vertical_velocity(vertical_position , xderv ,h):
144 return (vertical_position(xderv + h) - vertical_position(xderv - h)

) / (2 * h)
145 def vertical_acceleration(vertical_position , xderv ,h):
146 return (vertical_position(xderv -h) -2* vertical_position(xderv)+

vertical_position(xderv+h)) / (h**2)
147

148 if __name__ == "__main__":
149 main()
150

Listing 1: Modeling Plots Code

18

1 #Imported libraries
2 import numpy as np
3 import matplotlib.pyplot as plt
4 #Global variables of k constant , and runtime of 5pi
5 k = 1
6 Runtime = 5 * np.pi
7 #Samples for a setep size of 0.1 and to plot the analytical solution
8 Samples = 157
9 Step_Size = Runtime / (Samples - 1)

10 #intial conditions and mass=1
11 m = 1
12 x0 = 3
13 v0 = 0
14

15 #The samples below are for each of the methods and for a step of 0.1
16 SamplesforRunge = 157
17 t = np.linspace(0, Runtime , SamplesforRunge)
18 Step_size_Runge = Runtime / (SamplesforRunge - 1)
19

20 SamplesforSymplectic = 157
21 t2 = np.linspace(0, Runtime , SamplesforSymplectic)
22 Step_size_symplectic = Runtime / (SamplesforSymplectic - 1)
23

24 SamplesforImplicit = 157
25 t3 = np.linspace(0, Runtime , SamplesforImplicit)
26 Step_size_implicit = Runtime / (SamplesforImplicit - 1)
27

28 SamplesforExplicit = 157
29 t4 = np.linspace(0, Runtime , SamplesforExplicit)
30 Step_size_explicit = Runtime / (SamplesforExplicit - 1)
31

32

33 time = np.linspace(0, Runtime , Samples)
34

35

36 def main():
37 #Plot analytical soltuion
38 plt.subplot (2,1,1)
39 x_exactfn = np.vectorize(x_exact)(time)
40 plt.plot(time ,x_exactfn ,color=’green ’,label = ’Analytical Solution ’

)
41 plt.title("Comparsion plots for SHM")
42 plt.grid()
43 plt.xlabel("time")
44 plt.ylabel("Displacement [m]")
45 plt.ylim(-4,4)
46

47 #Below each of the methods is ran and labeled (Position)
48 x,v = Runge_Kutta ()
49 plt.plot(t,x, ’r--’,label = "Runge -Kutta Approximation")
50

51

19

52 xsym ,vsym = Euler_Symplectic ()
53 plt.plot(t2, xsym , ’b--’, label="Euler Symplectic Approximation")
54

55

56 ximp , vimp = Euler_Implicit ()
57 plt.plot(t3, ximp , ’y--’, label="Euler Implicit Approximation")
58

59 xexp , vexp = Euler_Explicit ()
60 plt.plot(t4, xexp , ’m--’, label="Euler Explicit Approximation")
61 plt.legend(loc=’lower right ’)
62

63 #(Velocity)
64 plt.subplot (2,1,2)
65 v_exactfn = np.vectorize(v_exact)(time)
66 plt.plot(time , v_exactfn , color=’green’, label=’Analytical Solution

’)
67 plt.xlabel("time")
68 plt.ylabel("velocity [m/s]")
69 plt.grid()
70 plt.ylim(-4, 4)
71

72

73 x, v = Runge_Kutta ()
74 plt.plot(t, v, ’r--’, label="Runge -Kutta Approximation")
75

76

77 xsym , vsym = Euler_Symplectic ()
78 plt.plot(t2, vsym , ’b--’, label="Euler Symplectic Approximation")
79

80 ximp , vimp = Euler_Implicit ()
81 plt.plot(t3, vimp , ’y--’, label="Euler Implicit Approximation")
82

83

84 xexp , vexp = Euler_Explicit ()
85 plt.plot(t4, vexp , ’m--’, label="Euler Explicit Approximation")
86 plt.legend(loc=’lower right ’)
87 plt.show()
88

89 #This outputs the error for each of functions by taking the error
at each point and adding then dividing by # points

90 #would have been simplier to make a function
91 for j in range(SamplesforRunge):
92 MAPERungeconstant = 1/ SamplesforRunge
93 errorrunge = sum((x_exactfn[j]-x[j])/x_exactfn[j])
94 MAPERunge = MAPERungeconstant*errorrunge
95 print("This is the MAPE for Runge:" + str(MAPERunge))
96

97 for j in range(SamplesforSymplectic):
98 MAPESymConstant = 1/ SamplesforSymplectic
99 errorsym = sum((x_exactfn[j]-xsym[j])/x_exactfn[j])

100 MAPEsym = MAPESymConstant*errorsym
101 print("This is the MAPE for Symplectic:" + str(MAPEsym))

20

102

103 for j in range(SamplesforExplicit):
104 MAPEExpconstant = 1 / SamplesforExplicit
105 errorexp = sum((x_exactfn[j] - xexp[j]) / x_exactfn[j])
106 MAPEexp = MAPEExpconstant * errorexp
107 print("This is the MAPE for Euler Explicit:" + str(MAPEexp))
108

109 for j in range(SamplesforImplicit):
110 MAPEImpConstant = 1 / SamplesforImplicit
111 errorimp = sum((x_exactfn[j] - ximp[j]) / x_exactfn[j])
112 MAPEimp= MAPEImpConstant * errorimp
113 print("This is the MAPE for Implicit:" + str(MAPEimp))
114

115 #Prints step Sizes
116 print("This is current step size for Runge -Kutta: " + str(round(

Step_size_Runge ,3)))
117 print("This is current step size for Euler Symplectic: " + str(

round(Step_size_symplectic ,3)))
118 print("This is current step size for Euler Implicit: " + str(round(

Step_size_implicit , 3)))
119 print("This is current step size for Euler Explicit: " + str(round(

Step_size_explicit , 3)))
120 print("DONE")
121

122 #Analytical position
123 def x_exact(time):
124 return x0*np.cos(np.sqrt(k/m)*time)
125

126 #Analytical velocity
127 def v_exact(time):
128 return -np.sqrt(k/m)*x0*np.sin(np.sqrt(k/m)*time)
129

130 #Differential equation f1=velocity
131 def f1(t,x,v):
132 return v
133 #Differential equation: f2=-k/m(x)
134 def f2(t,x,v):
135 return -k/m*x
136

137 #Fourth order runge kutta for 2nd order diffential equations
138 def Runge_Kutta ():
139

140 #creating the matrices to be filled in by x and v
141 h = Step_size_Runge
142 x = np.zeros ((len(t) ,1))
143 v = np.zeros ((len(t) ,1))
144 #initial conditions
145 x[0] = x0
146 v[0] = v0
147

148 #Runge Kutta
149 for i in range(SamplesforRunge -1):

21

150 K1x = f1(t[i],x[i],v[i])
151 K1v = f2(t[i], x[i], v[i])
152 K2x = f1(t[i] + h/2, x[i]+h*K1x/2, v[i] + h*K1v/2)
153 K2v = f2(t[i] + h / 2, x[i] + h * K1x / 2, v[i] + h * K1v / 2)
154 K3x = f1(t[i] + h / 2, x[i] + h * K2x / 2, v[i] + h * K2v / 2)
155 K3v = f2(t[i] + h / 2, x[i] + h * K2x / 2, v[i] + h * K2v / 2)
156 K4x = f1(t[i]+h,x[i]+h*K3x ,v[i]+h*K3v)
157 K4v = f2(t[i] + h, x[i] + h * K3x , v[i] + h * K3v)
158 x[i+1] = x[i] + h/6*(K1x +2* K2x +2*K3x+K4x)
159 v[i + 1] = v[i] + h / 6 * (K1v + 2 * K2v + 2 * K3v + K4v)
160

161 return x,v
162

163 #Euler Implicit
164 def Euler_Implicit ():
165 #Same method approach as Runge
166 h = Step_size_implicit
167 ximp = np.zeros((len(t3), 1))
168 vimp = np.zeros((len(t3), 1))
169 ximp [0] = x0
170 vimp [0] = v0
171 for k in range(SamplesforImplicit - 1):
172 #Solving the linear equations system
173 A = np.array ([[0, 1], [-1, 0]])
174 I = np.identity (2)
175 b = np.array ([vimp[k], ximp[k]])
176 vimp[k + 1], ximp[k + 1] = np.linalg.solve(I - (

Step_size_implicit * A), b)
177

178 return ximp ,vimp
179

180 #Euler Symplectic
181 def Euler_Symplectic ():
182 h = Step_size_symplectic
183 xsym = np.zeros((len(t2), 1))
184 vsym = np.zeros((len(t2), 1))
185 xsym [0] = x0
186 vsym [0] = v0
187 for k in range(SamplesforSymplectic - 1):
188

189 vsym[k + 1] = vsym[k] + h * f2(t2[k], xsym[k], vsym[k])
190 xsym[k+1] = xsym[k]+h*vsym[k+1]
191

192 return xsym ,vsym
193

194 #Euler Explicit
195 def Euler_Explicit ():
196 h = Step_size_explicit
197 xexp = np.zeros((len(t4), 1))
198 vexp = np.zeros((len(t4), 1))
199 xexp [0] = x0
200 vexp [0] = v0

22

201

202

203 for k in range(SamplesforExplicit - 1):
204 xexp[k + 1] = xexp[k] + Step_size_explicit * vexp[k]
205 vexp[k+1] = vexp[k]+ Step_size_explicit * f2(t4[k],xexp[k],vexp

[k])
206

207 return vexp ,xexp
208

209 if __name__ == "__main__":
210 main()
211

Listing 2: Test Case: SHM Code

1 This is the MAPE for Runge :7.183196393916714e-09
2 This is the MAPE for Symplectic :2.2736460451955488e-06
3 This is the MAPE for Euler Explicit :0.005631552584641939
4 This is the MAPE for Implicit :0.0034736158245725255
5 This is current step size for Runge -Kutta: 0.101
6 This is current step size for Euler Symplectic: 0.101
7 This is current step size for Euler Implicit: 0.101
8 This is current step size for Euler Explicit: 0.101
9 DONE

10

Listing 3: MAPE and Step Size (SHM)

1 #Imported libraries
2 import numpy as np
3 import scipy
4 import matplotlib.pyplot as plt
5 import astropy.units as unit
6 from astropy.constants import G,M_earth ,R_earth
7 import matplotlib.animation as animation
8 #Global Variables
9 T = 7.6e3

10 g = 9.81
11 m_d = 27200
12 C_d = 0.5
13 R = 1.83
14 A = np.pi * (R) ** 2
15 #Initial Values
16 h0 = 150000
17 v0 = 2000
18 #Ignition Time
19 t_ignite = 35.88
20 def main():
21 #Calling the functions to compute t,h,hdot
22 data = hddotwithRkn (0.02)
23 data1 = hddotwithEulerSymplectic (0.02)
24

25 #Plotting Modeling Comparsion of Euler Symplectic and Runge -Kutta
and using the limits you can zoom in

23

26 plt.figure(figsize =(12, 4), dpi =100)
27 #Top subplot time vs height
28 plt.subplot(2, 1, 1)
29 plt.plot(data[:, 0], data[:, 1], label=’Runge -Kutta ’)
30 plt.plot(data1[:, 0], data1[:, 1], label=’Euler Symplectic ’)
31 #Labeling ignition time and when mp=0
32 plt.axvline(x=t_ignite , color=’g’, label=’time of ignition ’)
33 plt.axvline(x=t_ignite + 20.27 , color=’r’, label=’time of engine

fuel =0’)
34 plt.xlabel("t [s]")
35 plt.ylabel("h [m]")
36 plt.legend(loc="lower right", bbox_to_anchor =(0.5, 0.15), ncol =2)
37

38 plt.title("Modeling Comparsion (Euler Symplectic vs. Runge Kutta)")
39 #Bottom subplot height vs velocity for the two
40 plt.subplot(2, 1, 2)
41 plt.plot(data[:, 1], data[:, 2], label=’Runge -Kutta ’)
42 plt.plot(data1[:, 1], data1[:, 2], label=’Euler Symplectic ’)
43 plt.axvline(x=0, color=’r’, label=’height of zero’)
44 plt.axhline(y=0, color=’r’, label=’velocity of zero’)
45 plt.xlim(h0 + 10, -10)
46 plt.xlabel("h [m]")
47 plt.ylabel("\dot{h} [m/s]")
48 #zoomed in limits
49 # plt.xlim (250, 0)
50 # plt.ylim(-200, 200)
51 plt.legend(loc="lower right", bbox_to_anchor =(0.5, 0.25), ncol =2)
52 #Need to zoom in to see end of motion
53 plt.show()
54

55 #Split data for end of motion animation
56 datarungeani = split(data)
57 datasymplecticani = split(data1)
58

59 #animation for Runge Kutta
60 t = datarungeani [:, 0]
61 h = datarungeani [:, 1]
62 fig , ax = plt.subplots ()
63 line , = ax.plot(t, h, color=’r’)
64

65 #Setting min and max
66 tmin = datarungeani [0, 0]
67 hmin = datarungeani [0,1]
68 tmax = max(t)
69 hmax = max(h)
70 xysmall = min(tmax , hmax)
71 maxscale = max(tmax , hmax)
72 plt.xlabel("Time (seconds)")
73 plt.ylabel("Height (meters)")
74 plt.title("Motion of Booster Runge -Kutta")
75

76 #Create circle to represent booster

24

77 circle = plt.Circle ((tmin , hmin), radius=np.sqrt (0.1))
78 ax.add_patch(circle)
79 ani = animation.FuncAnimation(fig , update , frames = len(t), fargs =[

t, h, line ,circle],
80 interval=1, blit=True)
81 #ani.save(’RungeKuttaEndMotion.gif ’, fps =60)
82

83 plt.show()
84

85 # animation for Euler Symplectic
86 t = datasymplecticani [:, 0]
87 h = datasymplecticani [:, 1]
88 fig , ax = plt.subplots ()
89 line , = ax.plot(t, h, color=’r’)
90

91 # Setting min and max
92 tmin = datasymplecticani [0, 0]
93 hmin = datasymplecticani [0, 1]
94 tmax = max(t)
95 hmax = max(h)
96 xysmall = min(tmax , hmax)
97 maxscale = max(tmax , hmax)
98 plt.xlabel("Time (seconds)")
99 plt.ylabel("Height (meters)")

100 plt.title("Motion of Booster Euler Symplectic")
101

102 # Create circle to represent booster
103 circle = plt.Circle ((tmin , hmin), radius=np.sqrt (0.1))
104 ax.add_patch(circle)
105 ani = animation.FuncAnimation(fig , update , frames=len(t), fargs =[t,

h, line , circle],
106 interval=1, blit=True)
107 # ani.save(’EulerSymplecticEndMotion.gif ’, fps =60)
108

109 plt.show()
110 print("DONE")
111

112

113

114 #Update frame which is used for animation and sets axis limits for
viewing

115 def update(num , t,h, line , circle):
116 line.set_data(t[:num], h[:num])
117 circle.center = t[num], h[num]
118 line.axes.axis ([67,max(t), 0, 100])
119

120 return line , circle
121

122 #Function to split data for the end of motion animation takes last 15 %
123 def split(data):
124 n = len(data [: ,0])
125 dim = int(n*0.85)

25

126 #print(n)
127 #print(n*0.85)
128 #print(int(n*0.15))
129 datanew = np.zeros((dim , 3))
130 for i in range(int(n*.85) , int(n)):
131 datanew[i -3380] = data[[i]]
132 #print(datanew)
133 return datanew
134

135 #refrences all of the functions and method to return t,h,hdot for
symplectic

136 def hddotwithEulerSymplectic(dt):
137 #set data1 as the data and this sets the initial values
138 data1 = [[0, h0, -v0]]
139

140 # initialization of loop variables
141 t, h, hdot = tuple(data1 [0])
142 #just for refrence to ensure same starting position as runge
143 print("Initial acceleration (Symplectic) = {:.2f} m/s^2".
144 format(hddot(0, h, hdot)))
145 #hddot is the differnetial equation that we want to model
146

147 #only runs for while height is greate than 0
148 while h > 0:
149 #calling the Euler symplectic function below
150 h,hdot = euler_symplectic(hddot ,t,h,hdot ,dt)
151 #adding the step size to it
152 t += dt
153 #attaching each line to the data1 set
154 data1 = np.append(data1 , [[t, h, hdot]], axis =0)
155 #print(data1)
156 #prints the min velocity to add to the table in Appendix
157 print("The minimum velocity (Symplectic) is: " + str(max(data1

[:,2])))
158

159 #Graphing same two plots just for Euler Symplectic and can adjust
the bounds to show the ending motion

160 plt.figure(figsize =(12, 4), dpi =100)
161 plt.subplot(2, 1, 1)
162 plt.title("Euler Symplectic Modeling")
163 plt.plot(data1[:, 0], data1[:, 1], label=’height as a fn of time’)
164 plt.axvline(x=t_ignite , color=’g’, label=’time of ignition ’)
165 plt.axvline(x=t_ignite + 20.27 , color=’r’, label=’time of engine

fuel =0’)
166 plt.xlabel("t [s]")
167 plt.ylabel("h [m]")
168 plt.legend(loc="lower right", bbox_to_anchor =(0.5, -0.15), ncol =2)
169

170 plt.subplot(2, 1, 2)
171 plt.plot(data1[:, 1], data1[:, 2], label=’the velocity over time vs

the height ’)
172 plt.axvline(x=max(data1 [:,2]) , color=’r’, label=’minimum velocity ’

26

)
173

174 plt.xlim(h0, 0)
175 plt.xlabel("h [m]")
176 plt.ylabel("\dot{h} [m/s]")
177 #plt.xlim (200 ,0)
178 #plt.ylim (-100,0)
179 plt.legend(loc="lower right", bbox_to_anchor =(0.5, -0.15), ncol =2)
180 plt.show()
181 return data1
182

183

184 #refrences all of the functions and method to return t,h,hdot for Runge
-Kutta

185 def hddotwithRkn(dt):
186 #Same method as before except data instead of data1
187 data = [[0, h0 , -v0]]
188

189 # initialization of loop variables
190 t, h, hdot = tuple(data [0])
191 print("Initial acceleration (Runge) = {:.2f} m/s^2".
192 format(hddot(0, h, hdot)))
193

194

195 #Only for height is greater than 0
196 while h > 0:
197 h, hdot = Runge_Kutta(hddot , t, h, hdot , dt)
198

199 t += dt
200

201 data = np.append(data , [[t, h, hdot]], axis =0)
202

203 print("The minimum velocity (Runge) is: " + str(max(data[:, 2])))
204

205 plt.figure(figsize =(12, 4), dpi =100)
206 plt.subplot (2,1,1)
207 plt.title("Runge -Kutta Modeling")
208 plt.plot(data[:, 0], data[:, 1],label = ’height as a fn of time’)
209 plt.axvline(x=t_ignite , color=’g’, label = ’time of ignition ’)
210 plt.axvline(x=t_ignite + 20.27 , color=’r’, label=’time of engine

fuel =0’)
211 plt.xlabel("t [s]")
212 plt.ylabel("h [m]")
213 plt.legend(loc="lower right", bbox_to_anchor =(0.5, -0.15), ncol =2)
214

215 plt.subplot (2,1,2)
216 plt.plot(data[:, 1], data[:, 2],label = ’the velocity over time vs

the height ’)
217 #plt.axvline(x=0, color=’r’, label=’height of zero ’)
218 plt.axhline(y=0, color=’r’, label=’velocity of zero’)
219 plt.xlim(h0 + 10, -10)
220 plt.xlabel("h [m]")

27

221 plt.ylabel("\dot{h} [m/s]")
222 #plt.xlim (250, 0)
223 #plt.ylim(-200, 200)
224 plt.legend(loc="lower right", bbox_to_anchor =(0.5, -0.15), ncol =2)
225 plt.show()
226 return data
227

228 #Below are all the functions refrenced above
229

230 #Gravity term as a fn of height
231 def gravity(h):
232 gravtop = G.value * M_earth.value
233 gravbottom = (R_earth.value + h) ** 2
234 gravity = gravtop / gravbottom
235 return gravity
236

237 #Density of air as a fn of height
238 def rho_air(h):
239 return 1.3 * np.exp(-h / (8.4e3))
240

241 #Mass of booster over time function
242 def mass(t):
243 m_d = 27200
244 m_p = 3.0e4
245 b = 1480
246 burning_max = 21
247

248 if t > t_ignite:
249 t_burning = t - t_ignite
250 else:
251 t_burning = 0
252 return m_d + (m_p -(b * t_burning))
253

254 #how much fuel is left in the booster function
255 def fuelamountterm(t):
256 m_d = 27200
257 m_p = 3.0e4
258 b = 1480
259 burning_max = 21
260 if t > t_ignite:
261 t_burning = t - t_ignite
262 else:
263 t_burning = 0
264 fuelamount = (m_p -(b * t_burning))
265 if fuelamount <= 0:
266 return 0
267

268 #Thrust term in the differential equation
269 def Thrust(t):
270 T = 7.6e3
271 return T / mass(t_burning)
272

28

273 #Combining all of the functions to create the differential equation to
be used

274 def hddot(t, h, hdot):
275

276 ARterm = (1/(2* mass(t)))*(rho_air(h) * C_d * A * (hdot) ** 2)
277 thrustterm = T / mass(t)
278 #Only adding the Thrust term to the equation if t>tignite
279 if t > t_ignite:
280 hdouble = -gravity(h) + ARterm - thrustterm
281 return hdouble
282 else:
283 hdouble = -gravity(h) + ARterm
284 return hdouble
285 return hdouble
286

287 #Runge -Kutta Method for a 2nd order differential equation in function
form

288 def Runge_Kutta(f, t, x, xd, h):
289 hsq = h*h
290 a = np.array([0, 0.25, 0.375, 12/13 , 1.])
291 c = np.array([253/2160 , 0, 4352/12825 , 2197/41040 , -0.01])
292 cd = np.array([25/216 , 0, 1408/2565 , 2197/4104 , -0.2])
293 g = np.array([[0, 0, 0, 0, 0],
294 [1/32, 0, 0, 0, 0],
295 [9/256 ,9/256 , 0, 0, 0],
296 [27342/142805 , -49266/142805 , 82764/142805 , 0, 0],
297 [5/18, -2/3, 8/9, 0, 0]])
298 b = np.array([[0, 0, 0, 0, 0],
299 [0.25, 0, 0, 0, 0],
300 [3/32, 9/32, 0, 0, 0],
301 [1932/2197 , -7200/2197 , 7296/2197 , 0, 0],
302 [439/216 , -8. ,3680/513 , -845/4104 , 0]])
303

304 fi = np.zeros (5)
305 fi[0] = f(t, x, xd)
306 cifisum = fi[0] * c[0]
307 cdifisum = fi[0] * cd[0]
308

309 for i in range (1,5):
310 ti = t + a[i]*h
311 gijfj = 0
312 bijfj = 0
313 for j in range(0,i):
314 gijfj += g[i][j] * fi[j]
315 bijfj += b[i][j] * fi[j]
316 xi = x + xd*a[i]*h + hsq*gijfj
317 xdi = xd + h * bijfj
318 #Function form
319 fi[i] = f(ti , xi, xdi)
320 cifisum += fi[i] * c[i]
321 cdifisum += fi[i] * cd[i]
322 #Returning the height , velocity in this case

29

323 return (x + h*xd + hsq*cifisum , xd + h*cdifisum)
324

325 #Euler symplectic for a second order differntial equation used
functions

326 def euler_symplectic(f, t, x, xdot , h):
327 v = xdot + h*f(t, x, xdot)
328 #returns h, hdot
329 return (x + h*v, v)
330

331

332 if __name__ == "__main__":
333 main()
334

Listing 4: Runge-Kutta and Euler Symplectic Hoverslam Maneuver Modeling/Numerical
Simulation Code

30

8 REFERENCES

“Falcon 9.” SpaceX, https://www.spacex.com/vehicles/falcon-9/. Iserles, Arieh. A First
Course in the Numerical Analysis of Differential Equations. Cambridge University Press,
2009.

Schmidt, Wolfram, and Volschow Marcel. Numerical Python in Astronomy and Astro-
physics a Practical Guide to Astrophysical Problem Solving. Springer, 2021.

SpaceX Falcon 9 Data Sheet - NASA.

https://sma.nasa.gov/LaunchVehicle/assets/spacex-falcon-9-data-sheet.pdf.

Strang, Gilbert. Computational Science and Engineering. Wellesley-Cambridge Press, 2019.

31

