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Introduction

This project will examine various numerical methods to model the Hoverslam
maneuver performed during the landing of a Falcon 9 first stage rocket booster. The
2nd order nonlinear ordinary delay differential equation with constraints consists
of gravity, air resistance and thrust terms and will be modeled using Runge-Kutta,
Euler Implicit, and Euler Symplectic numerical methods. The numerical methods
employed will be tested with varying step size in Python and presented to show
that they are suitable methods to model this special type of differential equation
application. They will be used to find the optimal ignition time of the booster, in
order to land with a vertical velocity (ḣ) and height (h) of about 0.

Differential Equation

The second order delay differential equation with constraints to model the vertical
acceleration of the booster is given as

ḧ =
−GM⊕

(R⊕ + h)2
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ḧ = Gravity(h) + AirResistance(t, h, ḣ) + Thrust(t)

m(t) = md +mp − b(tburning)

(1)

where G, M⊕, and R⊕ are astronomical coefficients associated with the Earth.
For the Air Resistance term, ρ(h) represents the density of air as a function of
vertical height, and CD is the drag coefficient of air. The Falcon 9 booster has a
circular cross-sectional area with a radius of 1.83m and it’s mass varies with the
function m(t) shown above. Finally, the Thrust term consists of T which is the
thrust produced by the booster in kN. The differential equation is described as a
delay differential equation because the final term (Thrust) is only added to the
equation for t ≥ tignite. The initial conditions of ḣ and h are known and serve as
the starting point for the numerical methods. The integration is to be halted if
the ground is reached or if the propellant is exhausted (mp). These boundaries
will vary as the time of ignition is changed to find the optimal ignition time.

Fig. 1: Falcon 9 Booster Flight Path

Numerical Methods

The 2nd order differential equation that is used in this situation and through-
out mechanics is of the form:

ḧ = f (t, h, ḣ), (2)

where, the motion is directed inwards towards the center of the Earth.

1 Euler Method

The Euler Method, which he published in 1768, is used to evaluate a first-
order differential equation. It can be transformed to be applicable to 2nd
order differential equations, and the explicit Euler scheme is shown in equa-
tion 3.

hn+1 = hn + ḣ0∆t,
˙hn+1 = ḣn + f (tn, hn, ḣn)∆t

(3)

1.1 Symplectic Euler Scheme

An explicit scheme finds values at a later time based on the values found at
previous times. This method can be improved by combining both explicit
and implicit schemes, creating a smyplectic scheme. The Euler symplectic
scheme is shown below in equation 4.

ḣn+1 = ḣn + f (tn, hn, ḣn)∆t

hn+1 = hn + ˙hn+1∆t
(4)

1.2 Implicit Euler Method

The Euler method can also be manipulated into an implicit scheme that
calculates the system at a future time from the given system at present and
future times. In order to make this method applicable to a 2nd order ODE,
we need to solve a system of equations in each step as shown below.

[I −∆tA][hn+1] = h

[I −∆tA][ ˙hn+1] = ḣ
(5)

2 Runge-Kutta Method

The Runge-Kutta method is fourth order accurate numerical method. In a
similar fashion to the Euler method the given Runge-Kutta method can be
transformed to be applicable to a 2nd order ODE and the equations are

hn+1 = hn +
∆t

6
(k1h + 2k2h + 2k3h + k4h)

˙hn+1 = ḣn +
∆t

6
(k1ḣ + 2k2ḣ + 2k3ḣ + k4ḣ)

(6)

where equation 6 combines the K factors in a weighted average calculated at
each step.

Test Case

Fig. 2: SHM Test Case.

In Figure 2, it shows the testing of the numerical methods
discussed in the previous section. They are used to model the
displacement and velocity of a Simple Harmonic Oscillator.

Modeling and Simulation

The following figure shows the modeling of the Euler Symplec-
tic and the Runge-Kutta methods of the booster during the
final approach to sea level. It is shown for an ignition time of
approximately 36s after the booster was 150km above Earth’s
surface, traveling at -2km/s, and both methods have a step
size of 0.02.

Fig. 3: Booster Motion Modeling

Remarks and Conclusions

The Runge-Kutta method shows a velocity of 0m/s at a height
of 3m. These are almost optimum landing parameters. The
rocket then has a positive velocity and gains altitude before
mp = 0. So, the engine can be throttled down at that time to
perform a safe landing. However, when the Euler symplectic
model gets close to a height of 0m the rapid changes prove
to be too much for the numerical method to adapt with the
identical step size. An adaptive step size will be implemented.


