COLLEGES OF NANOSCALE SCIENCE + ENGINEERING SUNY POLYTECHNIC INSTITUTE

Background

The Schrödinger Equation: 1D
Lattice
Quantum mechanical systems are characterized by probabilistic states that are experimentally shown to have wavelike properties. As such, Erwin Schrödinger
wave equation describing the time evolution of a quantum system,

$$
\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi+V \Psi=i \hbar \partial_{t} \Psi
$$

where $\Psi=\Psi(\vec{r}, t)$ is a complex function called the wavefunction describing the quantum system. The constant \hbar is the reduced Planck's constant, and m is the mass of the quantum
object. For example, the wavefunction of an electron orbiting a single atom is a wave composed of spherical harmonics such that the probability of finding the electron at a position $\overrightarrow{\vec{y}}$ is equal to
the square modulus of the complex amplitude of the wave at that point, i.e. $|\Psi(\vec{r}, t)|^{2}$. the square modulus of the complex amplitude of the wave at that point, i.e. $|\Psi(\vec{r}, t)|$ Applying separation of variables, (and focusing on only one dimension of space for simplicity) we
find the very useful time-independent Schrödinger Equation,

$$
\Psi(x, t) \equiv \psi(x) \cdot \varphi(t)
$$

$$
\begin{aligned}
& \Psi(x, t) \equiv \psi(x) \cdot \varphi(t) \\
& \frac{\hbar^{2}}{2 m} \psi^{\prime \prime}+V \psi=E \psi
\end{aligned}
$$

where the separation constant E equals the total energy of the system. We can discretize space $\psi_{n} \equiv \psi\left(x_{n}\right)$, as follows,

$$
\frac{\hbar^{2}}{2 m}\left(\psi^{\prime \prime}\right)_{n}+V_{n} \psi_{n}=E \psi_{n} .
$$

Applying the finite
(defining $\left.t_{0} \frac{t^{2}}{\underline{h^{2}}} \frac{h^{2}}{2 m a}\right)$

$\widehat{H} \psi=E \psi$
where \hat{H} is called the Hamiltonian matrix. It is an operator whose observable is the total energy of the system. In this simple case, the matria takes a convenient tridiaigonal form, but this in
general does not always happen. It is the focus of this project to investigate numerical methods general loes not always happen. It is the focus of this project to investigate numerical methods
of exploiting physical symmerries in cases of a anotriviai Hamiltonian matrix to reduce it down to of exploiting physical symmetries in cases of a no
a form much more easily handled by computers.

Hamiltonian Construction using Green's Functions

 existing ones and increase its multipicicity. These limitations are
graphs. There are however heuristic techniques to check for ghosts.

Figure 5 . Density of states calculated for a $400 \times 2 \mathrm{~nm}$ graphene
nanoribbon using kernel polynomial method. Note the zero energy
 well to the predicted crossing of landau evelt by the abnd structure
 site. Doing this muttiplet times and averaging together wesolves the fit
pos. Larger σ on Dos. Larger σ on random number reneration more slowiy produces
noother spectra. Larger system size also causes faster conversion.

Continuous ψ Approximation square Lattice vs. Graphene

 bottom). Note that the first eienstatate in graphene is dominated Yedge states and does not approximate vacuum ground state.
The sauare lattice (because of it's cos dispersion relation
 nalytically solvable quantized wavefunction in a square well,
whereas sraphene with it's Dirac points shows distortion. This
dicretization disereas yraphene with its Dirac points showw distortion. This
tisrition could be used to approximate the continuous
tamitonian in unsolvable boundries. Hamitonian in unsolvable beoundaries.

Analytical Example: Graphene Band Structure

The time-independent Schrödinger equation, $\widehat{H} \psi=E \psi$, for a 1 D lattice with a two-atom basis takes the form of a block tridiagonal matrix equatio,
which generalizes, since $\psi_{n}=\psi_{0} e^{i k n a}$, to the following summation of block matrices,

$$
\sum_{m} H_{n, m} \psi_{0} e^{i \vec{k} \cdot\left(\vec{F}_{m}-\vec{r}_{n}\right)}=E \psi_{0}
$$

where \vec{r}_{n} denotes the vector position of the n-th lattice site and \vec{k} denotes the wavevector of the electron (proportional to its momentum)

$$
\text { graphene, there is a total of } 5 \text { block matrices to consider (since every pair of } A, B \text { atoms has four neighboring pairs), and the summation becornt }
$$

$$
\Leftrightarrow\left[\begin{array}{cc}
E_{0} & -t_{0}\left(1+e^{-i \vec{k} \cdot \vec{a}_{1}}+e^{-i \vec{k} \cdot \vec{a}_{2}}\right) \\
-t_{0}\left(1+e^{i \vec{k} \cdot \vec{t}_{1}}+e^{i \vec{k} \cdot \vec{a}_{2}}\right) & E_{0}
\end{array} \psi_{0}=E \psi_{0}\right.
$$

where $\vec{a}_{1}=a_{0}\left(\frac{3}{2} \hat{x}+\frac{\sqrt{3}}{2} \hat{\boldsymbol{y}}\right), \vec{a}_{2}=a_{0}\left(\frac{3}{2} \widehat{x}-\frac{\sqrt{3}}{2} \hat{y}\right)$ (see Figure 1). Finally, solving this eigenvalue problem for E gives the dispersion relation (E vs. k graph) for electrons in graphene, given by the equation
$E= \pm t_{0} \sqrt{1+4 \cos \left(\frac{\sqrt{3}}{2} a_{0} k_{x}\right) \cos \left(\frac{3}{2} a_{0} k_{y}\right)+4 \cos ^{2}\left(\frac{\sqrt{3}}{2} a_{0} k_{x}\right)}$ This represents the relationship between
energy for conducting electrons in graphene. A plot of this 2 dispersion relation (Figure 2) reveals six
points around which the energy surfaces for) a cone-like shape. These points are called Dirac points, and in the vicinity of these regions in k-space, electrons experience an energy-momentum relation similar to photons-that is, they act as if they are massless, and only travel at one spee regardless of energy.

igure 2. Graph of 2 D dispersion relation for graphene computed numericall using our methods (left) and ploteted using the analyticaly
Philosophical Transactions of the Royal society A).

Conclusion

Research in condensed matter physics relies heavily on the ability to understand and simulate the quantum mechanical effects that give rise to material properties. These simulations usually involve a spate
Hamitonians in the form of excessively larg sparse matrices.
Through the use of numerical techniques and the exploitation of physial symmetris, matrix Hamiltonians can be reduced to forms that are much
re easiy hended by computers, allos ind

Acknowledgments: Dr. Ji Ung Lee (SUNY Polytechnic Institute CNSE) Whose lectures in NNSE 782 Topological Insulators: Dirac Condensed Matter
Systems inspired much of this material Systems inspired much of this material.

