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Background

The Schrédinger Equation: 1D

Lattice
Quantum mechanical systems are characterized by probabilistic states that are experimentally

shown to have wavelike properties. As such, Erwin Schrodinger devised a partial differential
wave equation describing the time evolution of a quantum system,
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where W = Y(#,t) is a complex function called the wavefunction describing the quantum
system. The constant h is the reduced Planck’s constant, and m is the mass of the quantum
object. For example, the wavefunction of an electron orbiting a single atom is a wave composed
of spherical harmonics such that the probability of finding the electron at a position 7 is equal to
the square modulus of the complex amplitude of the wave at that point, i.e. |¥ (%, t)|?.

Applying separation of variables, (and focusing on only one dimension of space for simplicity) we
find the very useful time-independent Schrédinger Equation,
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where the separation constant E equals the total energy of the system. We can discretize space
into a one-dimensional lattice, a set of N points {x,},=1 .y, spaced equally by a, with

Yn = P(xy,), as follows,
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Applying the finite element technique, this turns into a tridiagonal matrix eigenvalue equation,
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where H is called the Hamiltonian matrix. It is an operator whose observable is the total energy
of the system. In this simple case, the matrix takes a convenient tridiagonal form, but this in
general does not always happen. It is the focus of this project to investigate numerical methods
of exploiting physical symmetries in cases of a nontrivial Hamiltonian matrix to reduce it down to
a form much more easily handled by computers.

Numerical Analysis Techniques
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Figure 4. If only low eigenvalues are needed (often the case due to infinite low
contribution, high energy states) Lancazo’s algorithm can be employed to compute
them significantly faster (convergence seen on bottom left took 1/80th the time as
scipy solver) and with less memory requirements, as it does not iterate the matrix
hamiltonian but rather uses it to create a tridiagonal “T” matrix with the same
eigenvalues. Higher eigenvalues will converge after many iterations but loss of
orthogonality can occur causing ghost eigenvalues to appear which converge to
existing ones and increase its multiplicity. These limitations are seen in the right
graphs. There are however heuristic techniques to check for ghosts.
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Hamiltonian Construction using Green’s Functions

Our technique for solving systems composed of semi infinite leads connected to a finite scattering model
relies on the well known Green’s equations:
A(E) G"(E) =1
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Where Aisdefinedas A -p1-H-%, -%,-3%,,
Gr is called the retarded Green’s function and describes the local density of states and the propagation of
electrons injected in the device, and (Gr(E))T its Hermitian conjugate.
G=<(E), the lesser Green’s function, represents the electron correlation function for energy level E. The
diagonal elements of G<(E) represent the electron density per unit energy. G>(E), the greater Green’s
function, representsthe hole correlation function for energy level E which is proportional to the density of
unoccupied states. | is the identity matrix and H is the system Hamiltonian.
2rL and 2rR represent the self-energies due to left and right contact coupling.

Our technique for constructing these green matrices for
bounded scattering regions primarily employs the nested
dissection algorithm. This allows for the constructions of an
efficiently solvable sparse matrix as well as the ability to exploit G @ G G
existing symmetries for model reduction. @ @ @ @
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With this partition the raw Hamiltonian can be written as the @ G @ @ @ @ @ @

symmetric block matrix A:
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The technique starts by partitioning the lattice into two
disconnected sets (L & R) and an interface (S).
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Our G matrix becomes: -
where Agg i1s the Schur complement,
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Since G satisfies the relation: G=(I-L")G +D'L™
It decomposes as such: » The diagonals describing L and R are computed
Gis = (Ass) ; independently from each other:
Glo=-A7lAGLs,  Gir=All—A[ALs(GLs) = AL+ A[[ALGLATAL]

Gps = —ApkArsGls. Ghe=Agnk — AnrAgs (Ghs)' = ARk + AnhArsGosARsALE

G< is calculated similarly and becomes:
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If needed, R and L are further split. s PR e TN L.
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Figure 1. Before and after of matrix fully diagonalized through nested decomp. (left)
It preserves sparseness, produces G matrices and takes less operations than RGF (right)

Continuous Y Approximation:
Square Lattice vs. Graphene
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Figure 5. Density of states calculated for a 400x2 nm graphene
nanoribbon using kernel polynomial method. Note the zero energy
peak is does to zigzag edge states but the other peaks correspond very
well to the predicted crossing of landau levels by the band structure
quantized in the shorter direction (analytically predicted .603 eV
energy step size in blue). Instead of computing the DOS at each site
individually the total DOS is calculated with random weight for each
site. Doing this multiple times and averaging together resolves the full
DOS. Larger 0 on random number generation more slowly produces
smoother spectra. Larger system size also causes faster conversion.
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Figure 6. Site probability density functions (@ ) for first, second,
and third eigenstates (calculated by numpy sparse eigensolver) of
the square well filled by square lattice (top) and graphene
(bottom). Note that the first eigenstate in graphene is dominated
by edge states and does not approximate vacuum ground state.
The square lattice (because of it's cos dispersion relation
approximating a vacuum’s parabolic one) closely matches the
analytically solvable quantized wavefunction in a square well,
whereas graphene with it’'s Dirac points shows distortion. This
discretization could be used to approximate the continuous
Hamiltonian in unsolvable boundaries .
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Analytical Example: Graphene Band Structure

When a single layer of carbon atoms is isolated from graphite, it is called
graphene. Graphene has been the subject of intensive study recently for its
unique electrical properties, in particular for its electron band structure. Unlike
many more complicated systems, the band structure for graphene can be solved
analytically, and serves as a heuristic example for these more complicated cases
where the aid of numerical technigues may be necessary.

Graphene forms a 2D hexagonal lattice, with a two-atom basis. This forms two
sublattices, color-coded in Figure 1. Let us label them A and B. These sublattices
lead us to relabel the components of our wavefunction, ¥, so that each
component y,, has two parts: ,, 4 and Y, 5. Stated otherwise,
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Figure 1. Graphene lattice. Sublattices are labeled A (blue) and B (green). Yna
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The time-independent Schrodinger equation, ﬁl/) = Ev, for a 1D lattice with a two-atom basis takes the form of a block tridiagonal matrix equation,
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which generalizes, since Y,, = tpoeik”a, to the following summation of block matrices,
Z Hn,m‘/)oeik'(Fm_F") = EY,
m

where 7;, denotes the vector position of the n-th lattice site and k denotes the wavevector of the electron (proportional to its momentum).

In graphene, there is a total of 5 block matrices to consider (since every pair of A,B atoms has four neighboring pairs), and the summation becomes,
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where d; = q, (%’i +- ?3?), a, = a, (%f - ??) (see Figure 1). Finally, solving this eigenvalue problem for E gives the dispersion relation (E vs. k
graph) for electrons in graphene, given by the equation,
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This represents the relationship between momentum and
energy for conducting electrons in graphene.

Numerical Analytical

A plot of this 2D dispersion relation (Figure 2) reveals six
points around which the energy surfaces form a cone-like
shape. These points are called Dirac points, and in the
vicinity of these regions in k-space, electrons experience an
energy-momentum relation similar to photons—that is, they
act as if they are massless, and only travel at one speed
regardless of energy.

Figure 2. Graph of 2D dispersion relation for graphene computed numerically using our
methods (left) and plotted using the analytically derived equation (right; source:
Philosophical Transactions of the Royal Society A).

Conclusion

Research in condensed matter physics relies heavily on the ability to understand and simulate the quantum mechanical effects that give rise to
material properties. These simulations usually involve a space-discretized form of the time-independent Schrodinger equation, giving rise to
Hamiltonians in the form of excessively large sparse matrices.

Through the use of numerical techniques and the exploitation of physical symmetries, matrix Hamiltonians can be reduced to forms that are much
more easily handled by computers, allowing for the calculation of material properties like band structure in cases where it is not analytically feasible.
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