
Numerical Analysis Techniques

Figure 6. Site probability density functions (ψ*ψ) for first, second, 
and third eigenstates (calculated by numpy sparse eigensolver) of 
the square well filled by square lattice (top) and graphene 
(bottom). Note that the first eigenstate in graphene is dominated 
by edge states and does not approximate vacuum ground state. 
The square lattice (because of it’s cos dispersion relation 
approximating a vacuum’s parabolic one) closely matches the 
analytically solvable quantized wavefunction in a square well, 
whereas graphene with it’s Dirac points shows distortion. This 
discretization could be used to approximate the continuous 
Hamiltonian in unsolvable boundaries .

Continuous ψ Approximation:
Square Lattice vs. Graphene

Kernel Polynomial Method:
Graphene Nanoribbon DOS

Figure 5. Density of states calculated for a 400x2 nm graphene 
nanoribbon using kernel polynomial method. Note the zero energy 
peak is does to zigzag edge states but the other peaks correspond very 
well to the predicted crossing of landau levels by the band structure 
quantized in the shorter direction (analytically predicted .603 eV 
energy step size in blue). Instead of computing the DOS at each site 
individually the total DOS is calculated with random weight for each 
site. Doing this multiple times and averaging together resolves the full 
DOS. Larger σ on random number generation more slowly produces 
smoother spectra. Larger system size also causes faster conversion.

Figure 4. If only low eigenvalues are needed (often the case due to infinite low 
contribution, high energy states) Lancazo’s algorithm can be employed to compute 
them significantly faster (convergence seen on bottom left took 1/80th the time as 
scipy solver) and with less memory requirements, as it does not iterate the matrix 
hamiltonian but rather uses it to create a tridiagonal “T” matrix with the same 
eigenvalues. Higher eigenvalues will converge after many iterations but loss of 
orthogonality can occur causing ghost eigenvalues to appear which converge to 
existing ones and increase its multiplicity. These limitations are seen in the right 
graphs. There are however heuristic techniques to check for ghosts.
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Conclusion

Analytical Example: Graphene Band Structure
The Schrödinger Equation: 1D 
Lattice

 

Figure 1. Graphene lattice. Sublattices are labeled A (blue) and B (green).

 

 

 
 

 

 

Figure 2. Graph of 2D dispersion relation for graphene computed numerically using our 
methods (left) and plotted using the analytically derived equation (right; source: 
Philosophical Transactions of the Royal Society A).

 

  

Research in condensed matter physics relies heavily on the ability to understand and simulate the quantum mechanical effects that give rise to 
material properties. These simulations usually involve a space-discretized form of the time-independent Schrödinger equation, giving rise to 
Hamiltonians in the form of excessively large sparse matrices.

Through the use of numerical techniques and the exploitation of physical symmetries, matrix Hamiltonians can be reduced to forms that are much 
more easily handled by computers, allowing for the calculation of material properties like band structure in cases where it is not analytically feasible.

Hamiltonian Construction using Green’s Functions

Our technique for constructing these green matrices for 
bounded scattering regions primarily employs the nested 
dissection algorithm. This allows for the constructions of an 
efficiently solvable sparse matrix as well as the ability to exploit 
existing symmetries for model reduction.

The technique starts by partitioning the lattice into two 
disconnected sets (L & R) and an interface (S).

With this partition the raw Hamiltonian can be written as the 
symmetric block matrix A:

With its LDLT Decomposition:

Our G matrix becomes:

G lesser is computer similarly and thus becomes:

Since G satisfies the relation: 
It decomposes as such:

G< is calculated similarly and becomes:

 

The diagonals describing L and R are computed 
independently from each other:
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Figure 1. Before and after of matrix fully diagonalized through nested decomp. (left)
It preserves sparseness, produces G matrices and takes less operations than RGF (right)

If needed, R and L are further split.
A

LL
 and A

RR
 are decomposed by the

same algorithm individually. G is
calculated after A is fully reduced.


