
Quantum Mechanical Modeling of Condensed

Matter Systems

Authors:
Samuel Skriloff (Nanoscale Engineering/Applied Mathematics, Soph.)
Steven Gassner (Nanoscale Science/Applied Mathematics, Soph.)
Sean Gibbons (Nanoscale Engineering/Applied Mathematics, Soph.)

Advisor: Dr. Andrea Dziubek

SUNY Polytechnic Institute
Colleges of Nanoscale Science and Engineering

1



Contents

1 Project Definition 5

2 Physical Problem 6
2.1 Quantum Physics (Simplified) . . . . . . . . . . . . . . . . . . 6
2.2 Probability in Quantum Mechanics . . . . . . . . . . . . . . . 9

3 Mathematical Aspects 12
3.1 Operators and Observables . . . . . . . . . . . . . . . . . . . 12
3.2 The Schrödinger Equation . . . . . . . . . . . . . . . . . . . . 13
3.3 The TISE as an Eigenvalue Problem . . . . . . . . . . . . . . 14
3.4 V (x) and the Wavefunction . . . . . . . . . . . . . . . . . . 14
3.5 Analytical Solutions of the TISE: Infinite Square Well . . . . 15
3.6 Periodic Boundary Condition . . . . . . . . . . . . . . . . . . 18

4 Numerical Methods, Algorithm and Programming, Param-
eter Analysis, and Discussion of Results 19
4.1 Lattice Hamiltonian via Finite Difference Method . . . . . . . 19
4.2 Nested Dissection Method for Scattering and Transmission

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Multi-step Nested Dissection Algorithm and Results . . . . . 25

5 Summary of the Project 27

6 Appendix: Course Evaluation 28

2



List of Abbreviations

DOS ≡ Density of States

LDOS ≡ Local Density of States

TDSE ≡ Time Dependent Schrödinger Equation

TISE ≡ Time Independent Schrödinger Equation

Nomenclature
The meaning of symbols and physical constants are mentioned as they are
introduced throughout the report.
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1 Project Definition

The aim of this project is to survey numerical techniques for the simulation
of quantum mechanical condensed matter systems. Starting from the basics
of the Time Independent Schrödinger Equation and discretizing space into a
lattice, a matrix equation for the all-important Hamiltonian is derived, and
its relevance is studied in a handful of demonstrative systems. An additional
goal of this project is to explore techniques for the reduction of exceedingly
large Hamiltonian matrices into forms that are much less computationally
intensive. This model reduction is achieved through the analysis of physical
symmetries as well as through linear algebra methods.
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2 Physical Problem

2.1 Quantum Physics (Simplified)

(Note: In this discussion, we set the reduced Planck’s constant ~ = 1.)

Quantum mechanical systems are characterized by observables, numeri-
cal quantities which can be directly measured from the system. Examples
of observables include position (x), linear momentum (p), and energy (E).

At sufficiently small scales, it becomes apparent that such observables
can only take certain discrete values. For example, a given particle may
sometimes be observed to have an energy of 1 eV or 2 eV, but may never
be observed to have any values of energy in between. We then say that
properties like the energy of a system are quantized, and are limited to a
discrete set of possible values when observed.

As an example, let us discuss a simplified version of a famous experiment
done by Otto Stern and Walther Gerlach that discovered the property of
spin in subatomic particles. Although spin is a purely quantum mechanical
phenomenon, it can be understood heuristically as the literal “spinning” of
a charged particle, such as an electron. Classically, the angular momentum
of a spinning charged sphere produces a magnetic field analogous to a bar
magnet, with a north and south pole (Figure 1).

Figure 1: The spin of a charged particle is analogous to a tiny bar magnet

Let us imagine an apparatus such as that in Figure 2, with a strong mag-
netic field B applied as shown. Let us imagine shooting a tiny bar magnet
through this apparatus. One would expect the magnet to be deflected by
the magnetic field, and if a detector screen is placed behind the apparatus,
the magnet should leave a mark that is higher or lower than the position
straight ahead of its original trajectory. (This is under the crucial assump-
tion that the magnetic field B does not rotate the magnet in any way, and
that the deflection of the magnet is dependent only on its initial orientation
when shot through the detector. Keep in mind that this is in analogy to the
angular momentum of a tiny particle, which we assume would be negligibly
changed during its brief trip through the apparatus.)
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Figure 2: Simplified schematic of the apparatus used in the Stern-Gerlach
experiment

Let us now consider a variety of orientations for this bar magnet, ori-
entations (a), (b), and (c) as shown in Figure 3. We would expect varying
angles for the bar magnet to result in varying degrees of deflection. Magnets
with their north pole pointing in the direction of the magnetic field lines are
expected to deflect further upward, while magnets pointing in the oppo-
site direction are expected to deflect further downward. Thus, we can treat
this apparatus as a measuring instrument for the orientation of a small bar
magnet! A simple calculation (which we will not bother with here) could
easily connect the detector position of a bar magnet with its angle relative
to some axis, and we can thus easily determine from the detector screen
approximately what angle the bar magnet makes with the vertical direction.

Now, what happens when we use this apparatus to measure the spin of
subatomic particles? Let us imagine shooting a beam of electrons through
our apparatus. (Stern and Gerlach used silver atoms, but since the angular
momentum of silver is highly influenced by its lone valence electron, the
principle remains the same if we instead discuss electrons.) The result from
a beam of electrons is quite peculiar (Figure 4). Two very distinct bands of
markings appear on the detector screen. There seem to be only two possible
measured orientations for our electrons! In contrast to the bar magnets,
which we presume could be in any random orientation and thus would create
a broad, continuous distribution of marks on the detector screen, each of our
electrons is only measured to be in one of two very precise orientations with
respect to apparatus!

The conclusion to be drawn from the Stern-Gerlach experiment, and
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Figure 3: The expected trajectories for three bar magnet orientations (a),
(b), and (c), with detector positions labeled accordingly

countless other experiments studying nature at its smallest scales, is that
observable values in Nature are quantized. In the case of our electron spin,
we say that an electron’s spin can be observed to be +1/2 (“spin up”) or
−1/2 (“spin down”), and no values of spin in between. This quantization is
one of the fundamental ideas of quantum mechanics.

Another fundamental property of quantum mechanics is that of probabil-
ity. We will extend our simplified example of the Stern-Gerlach experiment
to make this notion of probability seem as natural as possible.

Imagine that we take all the “spin up” electrons from our experiment
and shoot them through an identical measuring apparatus. We expect all
the electrons to be deflected upward, and they do (Figure 5). Now let us
imagine that the new detector is aligned perpendicularly to the axis along
which our original B was pointing. Classically speaking, the component
of a magnetic moment along an axis perpendicular to the direction of the
magnetic moment is zero. But as we saw in our experiment, zero is not an
allowed value! Only values of +1/2 or −1/2 can be measured! Nature thus
has to choose between one of these values for the measured spin. So what
is she to do?

What Nature does in this case is something that has led many great
physicists to feel very uneasy about quantum mechanics (including Albert
Einstein, one of the founding fathers of the field). Nature plays dice. In
this idealized scenario, where the detector is perfectly orthogonal to the
direction of the incident spins, the only prediction we can make is that half
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Figure 4: The result when electrons are shot through our apparatus

will be deflected to the left and half will be deflected to the right. According
to quantum mechanics, in this scenario, nothing can be done to predict
with certainty what the spin of any particular electron will come out to
be–only the probability of a certain outcome can be known. Therein lies the
probabilistic nature of quantum theory. (It is a little more complicated than
this, but further details are discussed in the next section.)

2.2 Probability in Quantum Mechanics

One more important point to be mentioned about quantum mechanics is
that the kinds probabilities that Nature uses are quite different from classi-
cal probability theory. The difference lies in the use of complex numbers. To
calculate probabilities in quantum mechanics, one adds up complex quan-
tities called “amplitudes” and then takes the square modulus of the result
to obtain the probability of a particular outcome. This style of probability
allows for the peculiar effect of interference, in which adding the amplitudes
of two related events can actually decrease the probability of an outcome
relative to its probability when either of the two events is considered sepa-
rately.

The notation we use here is Dirac notation (a.k.a. “bra-ket” notation),
where vectors in a multi-dimensional complex space called a Hilbert space
can be written as “kets” (e.g. |v〉, representing column vectors) and “bras”
(e.g. 〈v|, representing a complex-conjugated row vector). That is,
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Figure 5: Imagine two more detectors placed in such a way that all “spin
up” electrons go to the top one and all “spin down” electrons go through
the bottom one

|v〉 :=

v1...
vn

 ⇒ 〈v| =
[
v∗1 . . . v∗n

]
. (1)

We can thus define the inner product between two vectors as,

〈u|v〉 =
[
u∗1 . . . u∗n

] v1...
vn

 = u∗1v1 + · · ·+ u∗nvn (2)

We represent a quantum state as a vector |ψ〉 in terms of some basis
{|ai〉} as follows:

|ψ〉 :=
∑
i

ci|ai〉 (3)

where ci ∈ C is the probability amplitude for |ψ〉 to be observed in state |ai〉.
The probability that |ψ〉 will be observed in state |ai〉 is given by the square
modulus |ci|2. In other words,

P|ψ〉→|ai〉 := |〈ai|ψ〉|2 = |ci|2 (4)
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Figure 6: When the two new detectors are made orthogonal to the original
detector, an even distribution between ”spin left” and ”spin right” electrons
results

Because the amplitudes ci are directly related to probabilities, we must
require that |〈ψ|ψ〉|2 = 1; in other words, we must require that the sum of
the probabilities of the state being found in any of its basis states be equal
to unity. Therefore, 6+6|ψ〉 is a unit vector.

We will see later on when we discuss applications of the Schrödinger
Equation that ψ can be interpreted as a wavefunction when expressed in a
basis of various position states. This causes the probability of finding the
quantum system (for instance, an electron) at a particular position to be
defined as the square modulus of a complex-valued wave at that position.
Thus, the wavefunction can be used to determine a probability density func-
tion for the position of a quantum object in a given potential. More on this
to come.
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3 Mathematical Aspects

3.1 Operators and Observables

A natural formalism to capture measurements with quantized outcomes is
the eigenvalue formalism in matrix mechanics:

Ôψ = Oψ (5)

Here, Ô is referred to as the operator with a corresponding observable O.
The symbol ψ refers generally to the “state” of a quantum system, a math-
ematical object which contains all the information of a quantum system.
Thus, the act of measurement in a quantum system is cast as an eigenvalue
problem, where the eigenvalues represent the observables associated with
certain eigenstate of that system.

In analogy to the experiment we considered in the previous section, Ô
represents the act of sending an electron with initial state ψ through the
measuring apparatus, with an observed outcome of O ∈ {−1/2,+1/2}.

This becomes a matrix equation when we express the state ψ as a vector
in terms of some basis. Let us define,

| ↑ 〉 :=

[
1
0

]
, | ↓ 〉 :=

[
0
1

]
. (6)

This is a natural choice of a basis, as it consists of two states (spin up and
spin down) that are the eigenstates of our system. The operator Ô can now
be easily written as a diagonal matrix in this basis. We stated earlier that
O in Eq. (5) takes on the values ±1/2. If we assign +1/2 as the observable
from | ↑ 〉, and assign −1/2 as the observable from | ↓ 〉, then this implies
the following form for Ô,

Ô :=
1

2

[
1 0
0 −1

]
. (7)

(In fact, Ô = 1
2σz where σz is one of the famous Pauli spin matrices,

derived specifically for this purpose.)
Thus, in general, the state of an electron |ψ〉 can be written as a linear

combination of a “spin up” state | ↑ 〉 and a ”spin down” state | ↓ 〉, and
by applying the operator Ô to |ψ〉, one can predict the probability that the
electron will have a measured spin of +1/2 or −1/2.
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3.2 The Schrödinger Equation

The Time-Dependent Schrödinger Equation (TDSE) is a partial differential
equation,

i
∂Ψ

∂t
= ĤΨ (8)

where Ψ = Ψ(x, t) and Ĥ is the Hamiltonian operator. Borrowed from
classical mechanics, the Hamiltonian contains information about the total
energy of a system. It can be decomposed into a kinetic energy operator
and potential energy operator as follows,

Ĥ = T̂ + V̂ = − 1

2m

∂2

∂x2
+ V (x) (9)

where V (x) is a space-dependent potential energy function for Ψ. Thus, the
expanded form of the TDSE reads,

− 1

2m

∂2Ψ

∂x2
+ V (x)Ψ = i

∂Ψ

∂t
. (10)

Oftentimes, we are more concerned about the space-dependent properties
of Ψ than its time-evolution, so we seek a Time-Independent Schrödinger
Equation (TISE). We obtain this by separating variables: assuming Ψ is a
product of a space-dependent and time-dependent function,

Ψ(x, t) = ψ(x)ϕ(t) (11)

Eq. (8) splits, (letting ϕ̇ := dϕ
dt )

iϕ̇ = Eϕ , − 1

2m
ψ̈ + V (x)ψ = Eψ (12)

Remembering that the Hamiltonian accounts for the total energy of the
system, we use the system’s total energy E as the separation constant. The
solution to the left-side equation in (11) is the complex exponential ϕ(t) =
ϕ0e

iEt, meaning that the time evolution of a state can be thought of as a
complex rotation with a frequency dependent on the state’s total energy E.
The right-side equation in (11) is the TISE we seek, which can be written
in terms of Ĥ as an eigenvalue equation:

Ĥψ = Eψ (13)
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3.3 The TISE as an Eigenvalue Problem

Let us rewrite Eq. (13) in terms of “kets” from before,

Ĥ|ψn〉 = En|ψn〉. (14)

We use n to index the n-th eigenstate |ψn〉 with corresponding eigenvalue
En. The eigenstates of the Hamiltonian represent characteristic states of the
system (e.g. ”spin up” or ”spin down” in our introductory experiment) and
the eigenvalues represent the observable quantities corresponding to those
states (e.g. +1/2 for ”spin up” and −1/2 for ”spin down”).

Remembering that we can express a given |ψ〉 in terms of any basis, like
any eigenvalue problem, we can choose a convenient basis formed by the
eigenstates (analogous to eigenvectors) of Ĥ,

|ψ〉 :=
∑
n

cn|ψn〉 (15)

making Ĥ a diagonal matrix,

[
Ĥ
]
{|ψn〉}

=

E1

. . .

En

 . (16)

Much of the process for numerically solving problems in quantum systems
boils down to simplifying Ĥ. See section 9 for more details.

3.4 V (x) and the Wavefunction

To illustrate the form of the wavefunction in various potentials, let us rear-
range the right-side equation in (12) as follows,

ψ̈ = 2m(V (x)− E)ψ (17)

This is a second-order linear ODE in ψ, with a proportionality constant
dependent on the difference between the potential energy and the system’s
total energy at each point. Let us assign a name to this proportionality
constant,

k2 := 2m(V (x)− E) ⇒ ψ̈ = k2ψ (18)

and solve the ODE in its most general form,
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ψ(x) = C1 e
kx + C2 e

−kx. (19)

Consider the following statements,

V (x) > E ⇒ k2 > 0 ⇒ Im(k) = 0.

V (x) < E ⇒ k2 < 0 ⇒ Re(k) = 0.
(20)

In other words, if the potential in a given region exceeds the total energy
of the wavefunction, k is purely real, and thus ψ will take the form of
an exponential growth or decay in this region; if the total energy exceeds
the potential, then k is purely imaginary, and ψ will take the form of a
superposition of sinusoidal waves. Simply put, a wavefunction will oscillate
in areas where it has an excess of energy and decay in areas where it does
not.

Recall from Section 2 that if |ψ〉 represents a quantum state in terms
of some basis, then it must satisfy |〈ψ|ψ〉|2 = 1. If we choose a basis of
infinitesimally small regions in a 1-dimensional space, we can express this
normalization condition as an integral,

〈ψ|ψ〉 =
∑
n

ψ∗nψn = 1 −→
∫ +∞

−∞
ψ∗(x)ψ(x)dx = 1. (21)

This integral condition simply states that the probability density function
given by the square modulus of the wavefunction must be properly normal-
ized; its integral across its whole domain must converge to 1.

Knowing (20) and (21) is enough to qualitatively predict the form of
the wavefunction (or at least the probability function associated with the
wavefunction) of a quantum system given its total energy and a potential
energy landscape. One simply has to put together sinusoids and exponential
curves according to (20) in a way that ensures the absolute area under the
curve converges to unity according to (21). Figure 7 illustrates this.

3.5 Analytical Solutions of the TISE: Infinite Square Well

Let us move on to a two-dimensional case, applying the principles from the
previous section. In two dimensions, the Hamiltonian operator takes the
following form,

Ĥ = − 1

2m

(
∂2

∂x2
+

∂2

∂y2

)
+ V (x, y). (22)
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Figure 7: A qualitative visualization of the real component of a wavefunction
ψ(x) with energy E in a potential V (x). Note the oscillatory behavior of
ψ(x) in regions where V (x) < E and the exponential decays where V (x) >
E. Note also that the shaded area is finite.

Let us consider a two-dimensional “box,” with rigid walls that no particle
can escape from. This environment an infinite square well potential, where
V is 0 inside the box and infinitely large elsewhere. Explicitly,

V (x, y) =

{
0, ∀(x, y) ∈ (0, Lx)× (0, Ly)

∞, otherwise
. (23)

where Lx and Ly are the lengths of the sides of the box in the x and y
directions, respectively.

Focusing on the region inside the box (where V = 0), the TISE is simple,

− 1

2m

(
∂2

∂x2
+

∂2

∂y2

)
ψ = Eψ (24)

where ψ = ψ(x, y). Separating variables by imposing a solution ψ(x, y) =
ψx(x)ψy(y), the equation turns into two ODEs, one in terms of x and one
in terms of y. Consider the ODE in x. If we define k2x := 2mE, the ODE
becomes, (with ψ′′ ≡ dψ

dx )

ψ′′x = −2mEψx −→ ψ′′x = −k2xψx. (25)

The general solution to this ODE is thus,

ψx(x) = C1 sin(kxx) + C2 cos(kxx) (26)
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with C1, C2 ∈ C.
From the nature of our potential, we know that the wavefunction should

be zero at the walls of our box, as well as anywhere outside of it. A particle
in this box, regardless of its energy, should have zero probability of being
found outside. Thus, our boundary conditions are,

ψx(0) = ψx(Lx) = 0. (27)

This eliminates the cosine term in our solution in (26), since that term is
nonzero at x = 0. What it also does is quantize the allowed values for kx!
To ensure that (27) is satisfied, the following must be true,

ψx(Lx) = 0 ⇔ C1 sin(kLx) = 0 ⇔ kx =
nxπ

Lx
, nx ∈ Z. (28)

We now have a discrete set of eigenstates for our infinite square well Hamil-
tonian! Repeating the same process for solving ψy(y), we arrive at the
following general solution,

ψ(x, y) =

A sin

(
nxπ

Lx
x

)
sin

(
nyπ

Ly
y

)
, ∀(x, y) ∈ (0, Lx)× (0, Ly)

0, otherwise

(29)

where A is a normalization constant (the product of the C1 terms from ψx
and ψy). This normalization constant is found by imposing the following
normalization condition,∫ +∞

−∞

∫ +∞

−∞
ψ∗ψ dy dx = 1 (30)

which implies,

A2

∫ Lx

0

∫ Ly

0
sin2

(
nxπ

Lx
x

)
sin2

(
nyπ

Ly
y

)
dy dx = 1 (31)

and therefore,

A =
2

L
. (32)

We can then conclude that the bound eigenstates of our Hamiltonian as-
sociated with a two-dimensional infinite square well, indexed by the two
quantum numbers nx and ny and denoted by ψnx,ny(x, y), are as follows,
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ψnx,ny(x, y) =
2

L
sin

(
nxπ

Lx
x

)
sin

(
nyπ

Ly
y

)
(33)

∀(x, y) ∈ (0, Lx)× (0, Ly), and ψnx,ny(x, y) = 0 otherwise.

3.6 Periodic Boundary Condition

Let us impose a periodic boundary condition as follows,

ψ(0) = ψ(L), L ∈ R (34)

where L is the distance around a loop, or between two sites that are trans-
lationally symmetric (ψ(x) at each site is identical). Let us assume the
potential is zero everywhere, i.e. V (x) = 0. Then the TISE in one dimen-
sion reduces to,

ψ̈ = −2mE ψ. (35)

As usual, let us set k2 := −2mE. Then the ODE in (35) is easily integrated,
with a general solution of the form,

ψ(x) = C1e
ikx + C2e

−ikx, C1, C2 ∈ C. (36)

Imposing our boundary condition, much like the particle in a box, quantizes
k into a discrete set of allowed values,

ψ(L) = ψ(0) ⇒ eikL = 1 = ei2πn, n ∈ Z (37)

kn =
2πn

L
(38)
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4 Numerical Methods, Algorithm and Program-
ming, Parameter Analysis, and Discussion of
Results

4.1 Lattice Hamiltonian via Finite Difference Method

In many practical applications, especially in condensed matter physics, it
is useful to discretize space into a set of points with a regular spacing. In
one dimension, for example, we can use a set of points {xn}n=1,...,N with a
regular spacing a such that xn + a = xn+1. Physically, this can correspond
to a lattice where each site is at a distance a from each of its neighbors.

If we discretize space as such, then we can express any continuous func-
tion f(x) approximately as a discretized function as follows,

f(x), x ∈ [x1, xN ] −→ f(xn) ≡ fn, n = 1, ..., N. (39)

Using Dirac notation, we can then express a function as a vector of its values
fn at each xn,

|f〉 :=

 f1...
fN

 . (40)

Formally, we should define a basis for this ket |f〉. We want to define
it in terms of an orthonormal basis for the space of discretized functions
on our one-dimensional interval. That is, we want a set of functions {|Un〉}
such that,

|f〉 = f1


1
0
...
0

+ f2


0
1
...
0

+ · · ·+ fN


0
0
...
1

 ≡ f1|U1〉+ · · ·+ fN |UN 〉 (41)

and thus,

〈Un|f〉 = fn, 〈Um|Un〉 = δmn (42)

where δmn is the Kronecker delta. Recalling our definition for the inner
product in the context of functions from Section 2, our goal is to find a set
of functions that satisfy,
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〈Un|f〉 :=

∫ +∞

−∞
U∗m(x)f(x)dx = f(xn) (43)

which resembles the definition of the Dirac delta function, given by,∫ +∞

−∞
δ(x− xn)f(x)dx = f(xn). (44)

Therefore, we can formally define our basis as follows,

Un(x) := δ(x− xn) (45)

Let us now rewrite the TISE in terms of our discretized quantum state

|ψ〉. For notational simplicity, let us denote (ψ′′)n ≡ d2ψ
dx2

∣∣∣
xn

(not to be

confused with ψ′′n, the second derivative of the component ψn with respect
to x, which is meaningless for our purposes). Then the TISE reads,

− 1

2m
(ψ′′)n + Vnψn = Eψn (46)

where Vn ≡ V (xn). Using the finite difference technique, we can discretize
ψ′′ with a step size a. Consider,

(ψ′′)n ≈
ψ(xn − a)− 2ψ(xn) + ψ(xn + a)

a2
≡ ψn−1 − 2ψn + ψn+1

a2
. (47)

Substituting (45) into (44) and defining t0 := 1
2ma2

, we obtain,

−t0ψn−1 + (2t0 + Vn)ψn − t0ψn+1 = Eψn. (48)

We now have in (46) a form of the TISE that can be easily translated to
tridiagonal matrix equation,



(2t0 + V1) −t0 −t0

. . .
. . .

. . .

−t0 (2t0 + Vn) −t0

. . .
. . .

. . .

−t0 −t0 (2t0 + VN )





ψ1

...

ψn

...

ψN


= E



ψ1

...

ψn

...

ψN


(49)
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that is,

Ĥ|ψ〉 = E|ψ〉 (50)

where our Hamiltonian operator Ĥ is recast as a tridiagonal matrix.
This form of the Hamiltonian, resulting from a nearest-neighbor ap-

proximation for the second spatial derivative of ψ, reduces the TISE to an
eigenvalue problem that is easily solved by numerical procedures.

In physical terms, the diagonal elements 2t0 + Vn correspond to the on-
site energy for the quantum state at a given lattice site, while the off-diagonal
elements −t0 correspond to the hopping energy required for a state to ”hop”
between neighboring lattice sites. The elements in the bottom-leftmost and
the top-rightmost entries of Ĥ were added under the assumption of a periodic
boundary condition, that is,

“ψN+1” = ψ1. (51)

In the absence of a periodic boundary condition, these elements should be
removed.

4.2 Nested Dissection Method for Scattering and Transmis-
sion Models

Consider a device that can be segmented into a finite scattering region
(shown in gray) and an arbitrary number of attached leads each consist-
ing of an infinite connected string of identical supercells (the first shown in
red) translated by a consistent lateral translation. Each dot represents an
atomic tight binding orbital.

When a five-atom high column is used for discretization, the resulting
Hamiltonian is a symmetric block tridiagonal matrix as shown in Figure 9,
where each diagonal block represents the Hamiltonian of a layer in Figure 8.
The i-th diagonal block of the Hamiltonian represents the coupling between
atoms in a column. The off-diagonal blocks to its left and right represent
coupling from column i to i-1 and i+1 respectively. Both the diagonal and
off-diagonal blocks of the Hamiltonian are sparse for most systems which
can be approximated as tight binding.

Under the Landauer-Buttiker formalism the infinite lead Hamiltonian
does not need to be calculated but can instead be modeled by converting the
finite sparse contact cell Hamiltonian into a dense Hamiltonian of the same
dimension. This can be understood as the contribution of a ”self energy”
term (Σ) corresponding to the resonant energies in the lead allowed under

21



Figure 8: Each dot represents an atomic tight binding orbital.

required commutation with its translation operator. This new Hamiltonian
is as such:

Ĥ = H +
∑
i

Σi, Σi = (V †ls)i(G
<)i(Vls)i (52)

where Vls is the matrix of hoppings between the lead and the scattering re-
gion. [https://sundoc.bibliothek.uni-halle.de/diss-online/07/07H039/t5.pdf]
However this lesser Green matrix (G<) seems to be in inversion of an infi-
nite matrix which is impossible numerically so another method is required
for finding it. Typically the method used is the Recursive Green’s Function
(RGF) however we will instead be using Nested Dissection instead both for
efficiency (which will be demonstrated later) as well as its natural interpre-
tation as segmenting of an undirected graph which happens to be the digital
model of our lattice.

Note: if the lead structure has a more complex periodic supercell it
can be split into isolated sections with the green matrices combining under
Dyson’s Equation which will not be addressed here.

Nested disection [S. Li, S. Ahmed, G. Klimeck, and E. Darve.Computing
entries of the inverse of a sparsematrix using the FIND algorithm.J. Comp.
Physics, 227:94089427, 2008] relies on partitioning the device into two com-
pletely disjoint regions (L and R) separated by a separator S. (By default
a separator is constructed of the same supercell which defines the leads,
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Figure 9: When a five-atom high column is used for discretization, the
resulting Hamiltonian is a symmetric block tridiagonal matrix, where each
diagonal block represents the Hamiltonian of a layer in Figure 8.

centered in the scattering region.) With this discretization the scattering
region Hamiltonian can be written in the block matrix form:

A =

ALL 0 ALS
0 ARR ARS

A†LS A†RS ASS

 (53)

Note that the matrix remains Hermite. The LDLT factorization of A is:

A =

 I 0 0
0 I 0

A†LSA
−1
LL A†RSA

−1
RR I

ALL 0 0
0 ARR 0

0 0 ÂSS

 I 0 A−1LLALS
0 I A−1RRARS
0 0 I


(54)

where ÂSS is called the Schurr component:

ÂSS = ASS −A†LSA
−1
LLALS −A

†
RSA

−1
RRARS (55)

The retarded green matrix satisfies the relation [Takahashi et al.]:

Gr = (I − LT )Gr +D−1L−1 (56)

discretizing Gr on the right side yields:
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Gr = −

 A−1LLALSGrSL A−1LLALSG
r
SR A−1LLALSG

r
SS

A−1RRARSG
r
SL A−1RRARSG

r
SR A−1RRARSG

r
SS

0 0 0


+

A−1LL 0 0

0 A−1RR 0

0 0 Â−1SS

 I 0 0
0 I 0

−A†LSA
−1
LL −A†RSA

−1
RR I

 (57)

Therefore the components of Gr can be calculated sequentially:

GrSS = Â−1SS ,

GrLS = −A−1LLALSG
r
SS ,

GrRS = −A−1RRARSG
r
SS ,

GrLL = A−1LL +A−1LLALSG
r
SSA

T
LSA

−1
LL,

GrRR = A−1RR +A−1RRARSG
r
SSA

T
RSA

−1
RR.

(58)

The lesser green matrix satisfies the generalized Takahashi relation [Pe-
tersen et al.]:

G< = (I − LT )G< +D−1L−1Σ<(Gr)† (59)

The factorization yields:

G< = −

 A−1LLALSG<SL A−1LLALSG
<
SR A−1LLALSG

<
SS

A−1RRARSG
<
SL A−1RRARSG

<
SR A−1RRARSG

<
SS

0 0 0


+

A−1LL 0 0

0 A−1RR 0

0 0 Â−1SS

 I 0 0
0 I 0

−A†LSA
−1
LL −A†RSA

−1
RR I

Σ<(Gr)†

(60)

The components of G< are as such:

G<SS = GrSS(Σ<
SS(GrSS)† −ATLSA−1LLΣ<

LL(GrSL)† −ATRSA−1RRΣ<
RR(GrSR)†),

G<LS = −A−1LLALSG
<
SS +A−1LLΣ<

LL(GrSL)†,

G<RS = −A−1RRARSG
,
SS +A−1RRΣ<

RR(GrSR)†,

G<LL = A−1LLΣ<
LL(GrSL)† +A−1LLALSG

r
LS ,

G<RR = A−1RRΣ<
RR(GrSR)† +A−1RRARSG

r
RS ,

(61)
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Both L and R can be further split in independent processes which reduce
ALL, ARR, GRR and GLL even more. Our program continues splitting until
regions are only one unit cell thick in either x or y at which point the
corresponding A block can be replaced with an easily precalculated default.
For this reason other potentially more efficient methods of splitting such as
diagonally under the MATIS system [] were not experimented with.

4.3 Multi-step Nested Dissection Algorithm and Results

Keeping track of the splitting relies on multilevel binary tree. Thankfully
cython allows for easy implementation of undirected graphs as the remark-
ably efficient c hash tables which allowed us to forego a separate tree building
methods in favor of using a grouped version of the device graph itself. How-
ever for demonstration purposes we will rely on a more conventional tree as
well as the separate clustered graph:

Figure 10: Multi-level binary tree with clustered graph

Based on the hierarchical structure of the tree let Pi denote the set of
all clusters that are ancestors of cluster i. For example in the figure P6

= {1,3} and P12 = {1,3,6}. Let A(l) denote the matrix A after l levels of
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discretization. A0 is therefor A. The first step of the computation is to
incorporate all lower level clusters up to level l:

For l in range(1,L-1):

A(l) = A(l−1)

for i in clusters in l:

for j in Pi:

ψi,j = −(A
(l)
i,i )
−1A

(l)
i,j

for k in Pi:

A
(l)
j,k += ψ†i,jA

(l)
i,k

A
(l)
k,j = (A

(l)
j,k)
†

A
(l)
i,j = 0

A
(l)
j,i = 0

Next is the inversion of A(L−1) Since A is block diagonal, this has already
been done in the previous step for all blocks other than the first separator.
After that G(l) = (A(L−1))−1.
Finally diagonal blocks of Gr are extracted:

For l in range(L-2,0,-1):

G(l) = G(l+1)

for i in clusters in l:

for j in cluster indicies in Pi:

[G
(l)
i,j+=ψi,kG

(l)
k,j for k in Pi]

G
(l)
j,i = (G

(l)
i,j)
†

[G
(l)
i,i+=ψi,kG

(l)
k,i for k in Pi]

The complexity of this Nested Dissection (specifically with an extended
HSC slicing scheme) is here compared to the the more conventional RGF.
For this test both methods were used to divide a square lattice of N by N
gridpoints. For the purposes of counting steps rather than computing trans-
mission, self energies were ignored. Multiplication of a matrix of dimension a
x b matrix with a matrix of dimension b x c was counted as a*b*c total steps
and inversion of square matrix of dimension a was counted as a3. Plotted
on a logarithmic scale RGF has complexity O(N4) while Nested Dissection
has only O(N3)
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Figure 11: Complexity of extended HSC Nested Dissection versus RGF

5 Summary of the Project

The project aimed to give a comprehensive overview of numerical meth-
ods of analyzing quantum systems in various lattice geometries and physical
scattering regions. Starting from the fundamentals of the Time Independent
Schrödinger Equation and obtaining a matrix form for the Hamiltonian, a
platform for numerically simulating a wide variety of nanoscale systems was
achieved. The project then explored different methods of simplifying the ma-
trix Hamiltonian, using physical symmetries and linear algebra techniques
to reduce the model to a less computationally intensive form.

The goal was quite ambitious to try to complete in a month, but plenty
of progress was made. A point of improvement, if more time were given
for this project, would be to create a more self-contained report with all
the preliminary physics necessary for the general mathematically-interested
reader to understand the project. Unfortunately, given the depth of this
project, this was very difficult to accomplish, but an honest attempt was
made to explain the fundamental physics and build up to the main idea
behind the project.
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6 Appendix: Course Evaluation

The authors agree that MAT 460 was an engaging and challenging course
worthy of plenty of time commitment, especially during the project phase.
Many techniques in numerical mathematics and programming were taught,
and the opportunity to apply this to a customized project in a field of science
they deeply enjoy is a truly rewarding experience.

Many points of improvement for the course are largely circumstantial.
Distance-learning posed a number of difficulties for communication, which
is a critical part of any class and any project. However, the professor’s
willingness to visit Albany on plenty of occasions is deeply appreciated, and
it is what gave the class its most indispensable moments for the authors.

The authors agree that perhaps too much time was spent teaching linear
algebra and not enough time was spent during the project phase.

Overall, MAT 460 was a rewarding educational experience of which the
authors are honored and grateful to have been part.
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