
Numerical Methods for solving the Black-Scholes

Equation and its Applications

Rachael Paciello (Applied Mathematics)
Noah McDonald (Applied Mathematics)

Advisor: Andrea Dziubek
With help from Tural Sadigov

May 2018

1

Contents

1 List of Figures 4

2 Definitions in Financial Mathematics 5
2.1 Arbitrage . 5
2.2 Black-Scholes Model . 5
2.3 Call Option . 5
2.4 Derivative Security . 5
2.5 Dividends . 5
2.6 European Option . 5
2.7 Geometric Brownian Motion . 5
2.8 Hedge . 5
2.9 Implied Volatility . 6
2.10 Ito’s Lemma . 6
2.11 Ito Process . 6
2.12 Portfolio . 6
2.13 Risk Free Rate . 6
2.14 Security Trading . 6
2.15 Short Selling . 6
2.16 Strike Price . 6
2.17 Transaction Cost . 7
2.18 Volatility . 7
2.19 Wiener Process . 7

3 Introduction to the Black-Scholes Equation 8

4 Derivation 9
4.0.1 Brownian Motion/Wiener Process 9
4.0.2 Ito’s Lemma . 10
4.0.3 Assumptions . 12
4.0.4 Putting it all together . 12

4.1 Boundary and Initial Conditions 13

5 Analytical Solution 14

6 Numerical Methods - Finite Differences 17
6.1 Explicit Finite Difference Method 18
6.2 Implicit Finite Difference Method 20

7 Error in Numerical Methods 23
7.1 Stability and Convergence . 23

8 Algorithm and Programming 25
8.1 Explicit Method . 25
8.2 Implicit Method . 26
8.3 Exact Solution . 27

2

9 Results 28
9.1 Explicit results . 28
9.2 Implicit Results . 32

10 Summary of the project 36

11 Python Code 37

12 Course Evaluation 40

13 Bibliography 41

3

1 List of Figures

List of Figures

1 ex . 9
2 Brownian Motion . 10
3 A narrow Gaussian. 12
4 Grid Points . 18
5 Trinomial Tree of Explicit Finite Differences. 19
6 Trinomial Tree of Implicit Finite Differences. 21
7 T = 1, E = 100, r = .03, σ = .3, NAS = 45 28
8 T = 10, E = 100, r = .03, σ = .3, NAS = 45 29
9 T = 1, E = 50, r = .03, σ = .3, NAS = 45 29
10 T = 1, E = 100, r = .60, σ = .3, NAS = 45 30
11 T = 1, E = 100, r = .03, σ = .6, NAS = 45 30
12 T = 1, E = 100, r = .03, σ = .3, NAS = 100 31
13 T = 1, E = 100, r = .03, σ = .3, NAS = 100, T imeStep = 100000 31
14 T = 1, E = 100, r = .03, σ = .3, NAS = 45 32
15 T = 10, E = 100, r = .03, σ = .3, NAS = 100 33
16 T = 1, E = 100, r = .03, σ = .3, NAS = 150 33
17 T = 1, E = 100, r = .60, σ = .3, NAS = 150 34
18 T = 1, E = 100, r = .03, σ = .6, NAS = 150 34
19 T = 1, E = 100, r = .03, σ = .3, NAS = 200 35
20 T = 1, E = 100, r = .03, σ = .1, NAS = 100 35

4

2 Definitions in Financial Mathematics

2.1 Arbitrage

The simultaneous buying and selling of securities, currency, or commodities
in different markets or in derivative forms in order to take advantage of differing
prices for the same asset. Essentially ”free-money”

2.2 Black-Scholes Model

Black-Scholes Model gives a theoretical estimate of the price of European-
style options and shows that the option has a unique price regardless of the risk
of the security and its expected return

2.3 Call Option

An option to buy assets at an agreed price on or before a particular date

2.4 Derivative Security

Financial security with a value that is reliant upon or derived from an under-
lying asset or group of assets

2.5 Dividends

A sum of money paid regularly (typically quarterly) by a company to its
shareholders out of its profits (or reserves)

2.6 European Option

A European option may be exercised only at the expiration date of the option,
i.e. at a single pre-defined point in time. An American option the on other hand
may be exercised at any time before the expiration date

2.7 Geometric Brownian Motion

Continuous-time stochastic process in which the logarithm of the randomly
varying quantity follows a Brownian motion (also called a Wiener process) with
drift.

2.8 Hedge

A transaction that reduces the amount of risk of an investment

5

2.9 Implied Volatility

The implied volatility of an option contract is that value of the volatility of
the underlying instrument which, when input in an option pricing model (such
as Black–Scholes) will return a theoretical value equal to the current market
price of the option

2.10 Ito’s Lemma

Used to determine the derivative of a time-dependent function of a stochastic
process. It performs the role of the chain rule in a stochastic setting, analogous
to the chain rule in ordinary differential calculus
Let Xt, t ∈ R+ be an Ito Process X : Ω×R+ → R and f : C2(R×R+ ×R+).
Then the stochastic process ft := f(Xt, t) is also an Ito process which satisfies

∂(ft) = (∂f∂t + a∂f∂x + b2∂2f
2∂t2)dt+ dWt

∂f
∂x where Wt is a Wiener process

2.11 Ito Process

A stochastic process Xt satisfying the equation dXt = a(Xt, t)dt+b(Xt, t)dWt

is said to be an Ito Process

2.12 Portfolio

A range of investments held by a person or organization

2.13 Risk Free Rate

The risk-free rate represents the interest an investor would expect from an
absolutely zero risk investment over a specified period of time

2.14 Security Trading

Trading securities is a category of securities that includes both debt and equity
securities, and which an entity intends to sell in the short term for a profit that
it expects to generate from increases in the price of the securities

2.15 Short Selling

The sale of a security that is not owned by the seller or that the seller has
borrowed. Short selling is motivated by the belief that a security’s price will
decline, enabling it to be bought back at a lower price to make a profit

2.16 Strike Price

The price fixed by the seller of a security after receiving bids in a tender offer,
typically for a sale of bonds or a new stock market issue

6

2.17 Transaction Cost

Transaction costs are expenses incurred when buying or selling a good or
service

2.18 Volatility

A variable in option pricing formulas showing the extent to which the return
of the underlying asset will fluctuate between now and the option’s expiration.
Volatility can either be measured by using the standard deviation or variance
between returns from that same security or market index. Commonly, the higher
the volatility, the riskier the security

2.19 Wiener Process

A continuous-time stochastic process which has characteristics

1. W0 = 0

2. W has independent increments: for every t > 0, the future increments
Wt+u −Wt, u ≥ 0 are independent of the past values Ws, s < t

3. W has Gaussian increments: Wt+u−Wt is normally distributed with mean
0 and variance u,Wt+u −Wt ∼ ℵ(0, u)

4. W has continuous paths: With probability 1, Wt is continuous in t.

7

3 Introduction to the Black-Scholes Equation

The purpose of this project is to look at the famous Black-Scholes equation
and give an analysis on the numerical methods to solve the equation. Although
an exact solution for the price of European options is available, the prices of
more complicated derivatives such as American options must employ numerical
methods. This project will focus on explicit and implicit numerical methods
for solving partial differential equation (PDE) and compare the two methods to
the analytic solution to the Black-Scholes equation. This will give us a better
understanding of the equation and the methods to solve the equation.

The Black-Scholes equation is rooted in and was derived for the European
stock market. In the financial world mathematics occupies a large role in how
we make financial risks and investments. Mathematical models and equations
help us make said financial decisions, the Black-Scholes is one such equation.
The Black-Scholes equation is a partial differential equation used in the stock
market, the equation gives a theoretical projection of the price of European-
style options, specifically European-style call option in our case. The equation
shows that any call option has a unique value and does not effect the risk of the
security and its expected return. The equation is given as:

rf =
∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
(1)

Where f is the price of the option as function with respect to the stock price S
and time t, r is the interest rate of the said stock , and σ represents the volatility
of the stock.

This report will focus on the solution to the equation for European call op-
tions. It will present a derivation of the Black Scholes model, then introduce the
analytical solution by transforming said equation into the well known diffusion
equation and the boundary value problems for a European call will be solved.
Then it will introduce the finite difference method for solving PDE’s and employ
explicit and implicit approaches to approximating the solution. Finally a brief
analysis of the accuracy of each approach is provided.

8

4 Derivation

4.0.1 Brownian Motion/Wiener Process

As one might expect, stocks tend to follow an exponential pattern. In a perfect
world, their growth could be measured using a simple first order differential
equation

dx

dt
= µx (2)

with solution
X(t) = X0e

µt (3)

This is shown graphically below

Figure 1: ex

However, this is not sufficient in the real world, as there is ”noise” that needs
to be taken into account that will effectively prevent a smooth curve from form-
ing. This ”noise” will have a normal distribution called Y, Y ∼ Normal (µ =
0, σ2). We will write this as σZ where Z ∼ Standard Normal(µ = 0, σ2 = 1)
and σ is volatility. Our new equation becomes

dx = µx+ σZ (4)

We will now refer to Z as dW , as it will follow the Wiener Process or Brownian
Motion. A Wiener process is a particular type of stochastic process where only

9

the present state of the process is relevant for predicting the future.dW is related
to dt by the equation

dW = ε
√
dt (5)

where ε is a random sample from a standardized normal distribution. A graph
representing a Wiener Process in 1D, 2D, and 3D is shown below

Figure 2: Brownian Motion

Now we must apply our model to the financial world. Let S(t) represent
stock price at time t, S(t) be proportional to dt and dW, µ representing the
expected return on the stock (assumed to be constant) and σ representing the
volatility (also assumed to be constant).

dS = µSdt+ σSdW (6)

4.0.2 Ito’s Lemma

The price of a stock option is a function of the underlying stock’s price and
time. This concept of the behavior of functions of stochastic variables lead to
an important discovery by mathematician, Ito of Japan in 1951. Consider a
continuous and differentiable function G of variable x. If ∆x is a small change
in x and ∆G is the resulting small change in G then it is known that

∆G ≈ dG

dx
∆x (7)

In other words, ∆G is approximately equal to the rate of change of G with
respect to x multiplied by ∆x. For a continuous function of two variables, x
and t, the resulting analogous equation is

∆G ≈ ∂G

∂x
∆x+

∂G

∂t
∆t (8)

10

For a more precise approximation of ∆G the Taylor series expansion can be
used

∆G =
∂G

∂x
∆x+

∂G

∂t
∆t+

∂G

2∂x
∆x2 +

∂2G

∂x∂t
∆x∆t+

∂G

2∂t
∆t2 + ... (9)

Taking the limit as ∆x and ∆t approach zero we obtain

∆G =
∂G

∂x
dx+

∂G

∂t
dt (10)

since ∆x and ∆t are independent of each other and higher order terms can
be eliminated beacuse of their minimal contribution. Since the Black Scholes
equation is one that follows a stochastic process, we will extend equation (10) to
to cover such functions. Suppose that variable x follows the general Ito process
in equation (4) rewritten as

dx = a(x, t)dt+ b(x, t)dW (11)

Using equation (5), we can rewrite our previous equation as Taylor series ex-
pansion

∆x = a(x, t)∆t+ b(x, t)ε
√

∆t (12)

From this equation, it can be clearly seen that ∆x and ∆t are related. Now by
squaring our equation and dropping arguments we obtain

∆x2 = a2∆t2 + b2ε2∆t+ 2ab∆t
3
2 (13)

Once again, higher order terms of ∆t can be ignored because of their minute
contribution. By analogy we can rewrite equation (9) to

∆G =
∂G

∂x
∆x+

∂G

∂t
∆t+

∂G

2∂x
∆x2 +

∂2G

∂x∂t
∆x∆t+

∂G

2∂t
∆t2 + ... (14)

At this point, we will substitute our ∆x2 into equation (14):

∆G =
∂G

∂x
∆x+

∂G

∂t
∆t+

∂2G

∂x2
b2ε2∆t+ ... (15)

This equation brings to light an important difference in equations (9) and (14).
When limiting arguments where used in equation (9), second order terms ∆x2

were ignored. From equation (15) it can be seen that we cannot ignore our ∆x2

term since it is of component ∆t.
At this point we must examine what is happening with our ε2 term.The variance
of a standard normal distribution is 1.0. This means that

E(ε2)− [E(ε)]2 = 1 (16)

where E denotes the expected value. Since E(ε) = 0, it follows that E(ε2) = 1
from equation (16). The expected value of ε2∆t is therefor ∆t. The variance of
ε2∆t is shown to be 2∆t2 below:

Var[ε2∆t] = ∆t2 Var[ε2] = ∆t2 (E(ε4)−E(ε2)2) = ∆t2 (3−1) = 2∆t2 ≡ 0 (17)

Because the variance has component ∆t2, it is essentially equal to 0. With no
variance, everything gets accumulated around the mean, ∆t.

11

x

y

Figure 3: A narrow Gaussian.

In Figure 3, we show this relationship.
ε2∆t becomes non-stochastic and equal

to its expected value of ∆t as it tends to
0. Therefore, the term b2ε2∆t from equation
(15) equals b2dt as ∆t tends to 0. Taking the
limits as ∆x and ∆t approach 0 in equation
(14) and using our previous result, we obtain
Ito’s Lemma:

dG =
∂G

∂x
dx+

∂G

∂t
dt+

∂2G

2∂x2
b2dt (18)

4.0.3 Assumptions

The following assumptions are necessary to our derivation of the Black Scholes
model:

• The stock price follows the process developed in equation (5) with µ and σ
constant

• The short selling of securities with full use of proceeds is permitted

• There are no transaction costs or taxes

• There are no dividends during the life of the derivative security

• There are no arbitrage opportunities

• Security trading is continuous

• r is constant and the same for all maturities

4.0.4 Putting it all together

Now we are ready to derive the Black Scholes Equation. We assume that the
Stock Price S follows the process discussed in equation (6): dS = µSdt+σSdW .
Suppose f is the price of a derivative security contingent on S. The variable f
must then be some function of S and t. Applying Ito’s Lemma to our equation
we obtain

df = (
∂f

∂S
µS +

∂f

∂t
+

∂2f

2∂S2
σ2S2)dt+

∂f

∂S
σSdz (19)

Recall from Ito’s Lemma section that the Wiener process underlying f and S
are the same, i.e dz in equations (6) and (19) are the same. By choosing a
suitable portfolio, the Wiener process can be eliminated. Consider the following
portfolio in which we buy 1

∆ shares of our option where ∆[0, 1] and we sell one

stock, i.e short one stock, and long an amount of ∂f
∂S shares:

• -1 : Derivative security

12

• + ∂f
∂S : shares

We will define Π as the value of the portfolio. Therefore

Π = −f +
∂f

∂S
(20)

Since this equation does not involve dz the portfolio must be risk less during
time dt as there is no randomness. The assumptions listed previously imply
that the portfolio must instantaneously earn the same rate of return as other
short term risk free stocks in order to avoid an arbitrage. It follows then that

dΠ = rΠdt (21)

where r is the risk free interest rate. Combining and substituting equations (6),
(19), and () we obtain

rf =
∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
(22)

Equation (19) is the Black Scholes differential equation.

4.1 Boundary and Initial Conditions

For a call option with payoff (Stock Price - Strike Price) boundary conditions
are as follows:

V (s, t) ≈ 0 for s very small
V (s, t) ≈ s for s very large

with initial condition

V (s, 0) = max(Payoff, 0)

13

5 Analytical Solution

Beginning with the Black Scholes equation

rf =
∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
(23)

supplemented with the terminal and boundary conditions in the case of a Eu-
ropean call

F (S, T) = max(S −K, 0)
F (0, t) = 0

F (S, t) ∼ S as S →∞

The option value is defined over the domain 0 < S <∞ and 0 ≤ t ≤ T . In order
the analytically solve this PDE, we will first transform it into the well known
diffusion equation. We will begin by making the substitution u = e−rtf , which
comes from the fact that it is the portfolio value discounted by the interest rate
r that is a martingale (more specifically Brownian motion). Using the product
rule on f = e−rtu we can derive the PDE that the function u must satisfy:

rf = rert u = rert u+ ert
∂u

∂t
+ rfert

∂u

∂f
+

1

2
σ2f2ert

∂2u

∂f2
(24)

or more simply:

0 =
∂u

∂t
+ rf

∂u

∂f
+

1

2
σ2f2 ∂

2u

∂f2
(25)

Now we will make a change of variables. It can be observed that the underlying
process of variable f , is a geometric Brownian motion (as described in the
derivation) so that log f describes some Brownian motion with a drift. It is well
known in physics that log f should satisfy some form of the diffusion equation.
Therefore we will let y = logf and τ = T − t.

The boundary condition of the Black Scholes equation is given as the terminal
state, and so the evolution of the system must be constructed backwards. On
the other hand, the heat equation describes temperature changing in forwards
time, and so we must use substitution to reverse time. The coefficient ∂u

∂t of

equation (24) compared to the standard heat equation coefficient 0 = −∂u
∂t + ∂u

∂S .
Since

∂u
∂τ = −∂u∂t ,

∂u
∂f = ∂u

∂y
dy
df = 1

f
∂u
∂y

and

∂2u
∂f2 = ∂

∂f

(
1
f
∂u
∂y

)
= − 1

f2
∂u
∂y + 1

f2
∂2u
∂y2

substituting into equation (24) we find

0 = −∂u
∂τ

+ (r − 1

2
σ2)

∂u

∂y
+

1

2
σ2 ∂

2u

∂y2
(26)

14

To simplify this equation, we want to cancel the first partial derivative with
respect to y (unless r = 1

2σ
2). In order to do so, we must take into account the

drift of the Brownian motion. To cancel the drift, we make the substitutions:

z = y + (r − 1
2σ

2)θ , θ = τ

Under our new coordinate system, (z, θ) we have the following relation amongst
vector fields:

∂
∂z = ∂

∂y ,
∂
∂θ = −(r − 1

2σ
2) ∂∂y + ∂

∂τ

leading to equation (25) becoming

0 = −∂u
∂θ
− (r − 1

2
σ2)

∂u

∂z
+ (r − 1

2
σ2)

∂u

∂z
+

1

2
σ2 ∂

2u

∂z2
(27)

or
∂u

∂θ
=

1

2
σ2 ∂

2u

∂z2
, u = u(θ, z) (28)

which is one form of the well known diffusion equation with initial condition

max(e
k+1
2 x − e k−1

2 x, 0):
The original function f is recovered with:

f(T, S) = u(T − t, logS + (r − 1

2
σ2)θ) (29)

The fundamental solution to the previously given PDE(28) is given by:

Dθ(z) =
1√

2πσ2θ
e

−z
2σ2θ (30)

Derivation was found using the Fourier transform; the solution for u with the
initial condition u0 is given by the convolution:

u(θ, z) = u0 ∗Dθ(z) =
1√

2πσ2θ

∫ ∞
∞

exp(−
(logS + (r − 1

2σ
2)θ − j)2

2σ2θ
)dj (31)

Finally we put this in terms of the original function f:

f(T, S) =
1√

2πσ2θ

∫ ∞
∞

exp(−
(logS + (r − 1

2σ
2)θ − j)2

2σ2θ
)dj, (32)

Thus with some mathematical manipulation we are give:

u(θ, z) = Ke(z+ 1
2 θσ

2

N(d1)−KN(d2), (33)

Where N is the standard normal cumulative distribution function, and likewise

d1 =
1

σ
√
θ

[(z +
1

2
σ2θ) +

1

2
σ2θ] (34)

15

d2 =
1

σ
√
θ

[(z +
1

2
σ2θ)− 1

2
σ2θ] (35)

Thus changing u, z, and θ back into the original set of variables give the pre-
viously stated solution to the Black-Scholes equation. The asymptotic condition
can now be seen.

lim
z→∞

u(z, θ) = Ke(z) (36)

This condition gives back S when reverting to the original set of coordinates.
This is made possible by

lim
z→∞

N(z) = 1. (37)

16

6 Numerical Methods - Finite Differences

A prominent numerical method used to solve partial differential equations is
finite difference methods. This method approximates values of solutions at cer-
tain rectangular mesh points by replacing the partial derivatives in the PDE by
finite difference approximations and then solves the resulting system of equa-
tions.
Since in numerical computations we can only find finitely many numbers, we
will try to compute a table of the approximate value of the solution (Let’s call
it f). For this we need to fix the minimum and maximum values of x we are
interested in (xmin and xmax), the number m of sub intervals of the time period
[0, T], and the number of sub intervals n we use in the x direction. We will
denote

∆t = T
m , and ∆x = xmax−xmin

n
and define tk = k∆t, k = 0, ...,m; xi = xmin + i∆x, i = 0, ..., n

Our aim is to find the approximate values fij = f(Si, tj) In other words, we
want to form a (m+ 1)× (n+ 1) table of approximate values (denoted by Fij .
The notations are illustrated below:

F0,0

F0,1

F0,j−1

F0,j

F0,j+1

F0,m−1

F0,m

F1,0

F1,1

F1,j−1

F1,j

F1,j+1

F1,m−1

F1,m

Fi−1,0

Fi−1,1

Fi−1,j−1

Fi−1,j

Fi−1,j+1

Fi−1,m−1

Fi−1,m

Fi,0

Fi,1

Fi,j−1

Fi,j

Fi,j+1

Fi,m−1

Fi,m

Fi+1,0

Fi+1,1

Fi+1,j−1

Fi+1,j

Fi+1,j+1

Fi+1,m−1

Fi+1,m

Fn−1,0

Fn−1,1

Fn−1,j−1

Fn−1,j

Fn−1,j+1

Fn−1,m−1

Fn−1,m

Fn,0

Fn,1

Fn,j−1

Fn,j

Fn,j+1

Fn,m−1

Fn,m

t1

tj−1

tj

tj+1

tm−1

t0 = 0

tm = T

t1 tj−1 tj tj+1 tm−1X0 = Xmin Xn = Xmax

t

x

The values of f at t = T are given by the terminal condition . The values
corresponding to x = xmin and x = xmax are boundary conditions discussed
in earlier chapters. In order to find the middle values, we will have to make

17

use of our Black Scholes equation where derivatives are replaced by numerical
differentiation formulas. From textbooks of numerical methods we can find the
following approximate differentiation rules for a sufficiently smooth (meaning
enough times continuously differentiable) function f:

f ′(z) =
f(z + h)− f(z)

h
(38)

f ′(z) =
f(z)− f(z − h)

h
(39)

f ′(z) =
f(z + h)− f(z − h)

2h
(40)

f ′′(z) =
f(z − h)− 2f(z) + f(z + h)

h2
(41)

The first formula is called forward difference approximation, the second is back-
ward difference approximation and the third is the central difference approxi-
mation of the derivative

6.1 Explicit Finite Difference Method

After taking into account the terminal condition we have (n− 1) ·m empty
spaces to fill. After applying the boundary conditions, we will need to use our
PDE to derive (n−1)·m additional equations for our unknown values. In order to
get an explicit method for our backwards parabolic equation we start by writing
our Black Scholes equation at the points (xi, tj), i = 1, ..., (n− 1), j = 1, ...,m:

0 =
∂f

∂t
(xi, tj)+rS(xi, tj)

∂f

∂S
(xi, tj)+

1

2
σ2S2(xi, tj)

∂2f

∂S2
(xi, tj)−rf(xi, tj) (42)

To approximate the partial derivatives of f in the previous equation we will use
its values at the following grid points

Figure 4: Grid Points

Using our finite difference methods to obtain estimates for our partial derivatives
we get

∂f

∂t
(xi, tj) =

fi,j − fi−1,j

∆t
(43)

18

∂f

∂S
(xi, tj) =

fi,j+1 − fi,j−1

2∆S
(44)

∂2f

∂S2
(xi, tj) =

fi,j+1 − 2fi,j + 2fi,j−1

∆S2
(45)

After substituting our equations into our PDE, we obtain

rfi,j =
fi,j − fi−1,j

∆t
+ rS

fi,j+1 − fi,j−1

2∆S
+

1

2
σ2S2 fi,j+1 − 2fi,j + 2fi,j−1

∆S2
(46)

and after solving for fi−1,j we get

fi−1,j =
1

2
∆t(σ2j2−rj) fi,j−1+1−∆t(σ2j2+r) fi,j+

1

2
∆t(σ2j2+rj) fi,j+1 (47)

or more simply
fi−1,j = a fi,j−1 + b fi,j + c fi,j+1 (48)

where

a = 1
2∆t(σ2j2 − rj)

b = 1−∆t(σ2j2 + r)

c = 1
2∆t(σ2j2 + rj)

The following figure is a pictorial representation of equation (48)

fi−1,j

fi,j+1

c

fi,j
b

fi,j−1

a

Figure 5: Trinomial Tree of Explicit Finite Differences.

In our option pricing framework,figure 2 shows that given the value of the option
at boundary conditions, all interior points can be calculated using backwards
induction. In other words, given the option payoff at expiry nodes, then the
prices ∆t before expiry can be calculated. Then at those prices, the value
2∆t before expiry can be calculated and so on. Working iteratively backwards
through time until the option price for grid nodes t = 0 (i.e today) can be

19

calculated.
We will now formulate matrices from equation (48).

Fi−1 = AFi +Ki where i = N, ..., 2, 1 (49)

Fi =

fi,1
fi,2

...

...
fi,M−1

Ki =

a1fi,0
0
...
0

CM−1fi,M

A =

b1 c1 0 . . . 0 0
a2 b2 c2 . . . 0 0
0 a3 b3 . . . 0 0

0
...

...
. . .

...
...

0 0 0 . . . aM−1 bM−1

We will implement matrix methods later on in this paper using Python and
evaluate the results.

6.2 Implicit Finite Difference Method

Using our finite difference methods to obtain estimates for our partial deriva-
tives we get

∂f

∂t
(xi, tj) =

fi,j − fi+1,j

∆t
(50)

∂f

∂S
(xi, tj) =

fi,j+1 − fi,j−1

2∆S
(51)

∂2f

∂S2
(xi, tj) =

fi,j+1 − 2fi,j + 2fi,j−1

∆S2
(52)

After substituting our equations into our PDE, we obtain

rfi,j =
fi,j − fi+1,j

∆t
+ rS

fi,j+1 − fi,j−1

2∆S
+

1

2
σ2S2 fi,j+1 − 2fi,j + 2fi,j−1

∆S2
(53)

20

and after solving for fi−1,j we get

fi+1,j =
1

2
∆t(σ2j2−rj) fi,j+1+1−∆t(σ2j2+r) fi,j+

1

2
∆t(σ2j2+rj) fi,j+1 (54)

or more simply
fi+1,j = a fi,j−1 + b fi,j + c fi,j+1 (55)

where

a = 1
2∆t(rj − σ2j2)

b = 1−∆t(σ2j2 + r)

c = 1
2∆t(−σ2j2 − rj)

The following figure is a pictorial representation of equation (55)

fi+1,j

fi,j+1

c

fi,j
b

fi,j−1

a

Figure 6: Trinomial Tree of Implicit Finite Differences.

In the option pricing framework,figure 3 shows that given the value of the
option at boundary conditions, all interior points can be calculated using forward
induction. In other words, given the option payoff at expiry nodes, then the
prices ∆t before expiry can be calculated. Then at those prices, the value 2∆t
before expiry can be calculated and so on. Working iteratively forwards through
time until the option price for grid nodes t = T (i.e final expiration time) can
be calculated.

We will now formulate matrices from equation (55).

BFi = Fi+1 +Ki where i = N − 1, ..., 2, 0 (56)

Fi =

fi,1
fi,2

...

...
fi,M−1

21

Ki =
−a1fi,0

0
...
0

−CM−1fi,M

B =

b1 c1 0 . . . 0 0
a2 b2 c2 . . . 0 0
0 a3 b3 . . . 0 0

0
...

...
. . .

...
...

0 0 0 . . . aM−1 bM−1

22

7 Error in Numerical Methods

The basic idea of using finite difference methods is approximating the dif-
ferential operator by replacing the derivatives in the equation with differential
quotients. The error between the numerical solution and the exact solution is
determined by the error that is committed by going from a differential operator
to a difference operator. This error is called the discretization error or trun-
cation error. The term truncation error reflects the fact that a finite part of a
Taylor series is used in the approximation.The truncation error approximation
is given by

E = f ′(z)− finite difference approximation

The common way of calculating E is to

1. Expand f(z) in a Taylor series around the point where the derivative is
evaluated

2. Insert this Taylor series into error approximation formula

3. Collect terms that cancel and simplify the expression

Using the finite differences methods previously mentioned, we obtain the fol-
lowing truncation errors:

Forward Difference: O(h) =
f(z + h)− f(z)

h
− f ′(z) (57)

Backward Difference: O(h) =
f(z)− f(z − h)

h
− f ′(z) (58)

Central Difference: O(h2) =
f(z + h)− f(z − h)

2h
− f ′(z) (59)

Second Order Central Difference: O(h4) =
f(z − h)− 2f(z) + f(z + h)

h2
−f ′′(z)

(60)

7.1 Stability and Convergence

An important question to consider when using any numerical algorithm is
when is it stable? And if it is stable, when does it converge? From standard
matrix algebra it is known that a matrix of the form given in equation (48) is
stable if and only if

||A||∞ ≤ 1

If the infinity norm of our matrix is less than 1 then successive values of Fi
in equation (49) get smaller and smaller and hence the algorithm converges, or
is stable. It can be shown that for certain combinations of r, σ, and ∆t (and

23

therefore values for a, b, and c) the infinity norm of A will be greater than
1. Consequently, unless the grid size (particularly in the time axis) is chosen
appropriately the explicit finite difference method can be unstable, and hence
un-useful for option pricing.
From standard matrix algebra it is known that a matrix of the form given in
equation (55) is stable if and only if

||B−1||∞ ≤ 1

If the infinity norm of our matrix is less than 1 then successive values of Fi
in equation (56) get smaller and smaller and hence the algorithm converges, or
is stable. It can be shown that the infinity norm of B−1 is always less than 1 for
all combinations of r, σ, and ∆t (and therefore values for a, b, and c) the infinity
norm of A will be greater than 1. The implicit method is therefore guaranteed
to be stable.

The rate of convergence for both explicit and implicit algorithm is directly
related to the truncation error. They both converge at the rate of O(h) and
O(h2). A disadvantage of using the implicit method is that A disadvantage of the
implicit method is that it requires the inverse of a matrix to be calculated, and
the inverse of a matrix is (computationally) an expense operation to perform.
Fortunately, for tri-diagonal matrices such as B, fast inversion algorithms are
available.

24

8 Algorithm and Programming

8.1 Explicit Method

Create Function BSExplicit

Obtain number of grid points

Calculate coefficients a,b, and c

aj = 0.5*dt*(sig2*j2-r*j)

bj = 1-dt*(sig2*j2+r)

cj = 0.5*dt*(sig2*j2+r*j)

Specifiy boundary conditions

Form tri-diagonal matrix

Calculate price at interior nodes

Apply interpolation method

Get grid sizes

for i in range (N+1 to 0)
price(2nd column, N-1 column)

= price × tri-diagonal

25

8.2 Implicit Method

Create Function BSImplicit

Obtain number of grid points

Calculate coefficients a,b, and c

aj = 0.5*dt*(sig2*j2-r*j)

bj = 1-dt*(sig2*j2+r)

cj = 0.5*dt*(sig2*j2+r*j)

Specifiy boundary conditions

Form tri-diagonal matrix

Calculate price at interior nodes

Apply interpolation method using forwards,standard,and central differences

Get grid sizes

for i in range (0 to N+1)
price(2nd column, N-1 column)

= price × tri-diagonal

26

8.3 Exact Solution

The following code snippet was used to calculate the exact solution:

import math

import numpy as np

from scipy import stats

from scipy.stats import norm

def exactSolution(r,sigma,price,T,E):

d1 = (np.log(price/E) + T * (r+sigma**2/2)) / sigma*np.sqrt(T)

d2 = d1 - sigma*np.sqrt(T)

return price*np.exp(-0 * T)*norm.cdf(d1)-E*np.exp(-r*T)*norm.cdf(d2)

27

9 Results

9.1 Explicit results

In comparison to the exact solutions, our explicit results turned out very
well. Later on in this paper we show comparison of our results. The following
abbreviations were used:

• T = time

• E = strike price

• r = risk free rate

• σ = volatility

• NAS = Asset steps (the higher the more accurate, but more time consum-
ing)

Our results are what we expected, with the most sensitive factors being volatility
and risk free rate (respectively). However, as noted before the explicit method
can be unstable. If we set a large time step we begin to see unreadable results,
as shown in figure 13.

Figure 7: T = 1, E = 100, r = .03, σ = .3, NAS = 45

28

Figure 8: T = 10, E = 100, r = .03, σ = .3, NAS = 45

Figure 9: T = 1, E = 50, r = .03, σ = .3, NAS = 45

29

Figure 10: T = 1, E = 100, r = .60, σ = .3, NAS = 45

Figure 11: T = 1, E = 100, r = .03, σ = .6, NAS = 45

30

Figure 12: T = 1, E = 100, r = .03, σ = .3, NAS = 100

Figure 13: T = 1, E = 100, r = .03, σ = .3, NAS = 100, T imeStep = 100000

31

9.2 Implicit Results

If one is to compare the exact solution to the implicit solution one would see
that the implicit solution did rather well under certain conditions. From the
data gathered a few observations can be made; first and for most the change in
the asset step greatly changes the results of the solution, as the asset step grew
larger in size the more accurate the implicit solution got. It was also seen that
volatility and risk free rate were the most sensitive factors in this method, thus
changes in volatility and risk free rate effect the outcome of the solution (see
Figure 17, 20).

Figure 14: T = 1, E = 100, r = .03, σ = .3, NAS = 45

32

Figure 15: T = 10, E = 100, r = .03, σ = .3, NAS = 100

Figure 16: T = 1, E = 100, r = .03, σ = .3, NAS = 150

33

Figure 17: T = 1, E = 100, r = .60, σ = .3, NAS = 150

Figure 18: T = 1, E = 100, r = .03, σ = .6, NAS = 150

34

Figure 19: T = 1, E = 100, r = .03, σ = .3, NAS = 200

Figure 20: T = 1, E = 100, r = .03, σ = .1, NAS = 100

35

10 Summary of the project

As shown by the table below, our explicit results were much more accurate than
implicit. This could be due to a number of reasons, the main one being implicit
methods are generally more complex to implement.

Comparison of Numerical Methods - Option Prices
Strike Price ($) Exact Solution ($) Explicit Solution

($)
Implicit Solution
($)

50 51.53 51.46 49.00
100 103.06 102.91 98.01
150 154.60 154.37 147.01
200 206.13 205.82 196.01
250 257.66 257.73 245.00
300 309.19 308.73 294.00
350 360.73 360.19 343.44

Table 1: Computed with the following parameters :
Time = 1 year, Stock Price = 2 * Strike Price , Risk free rate = 3 %,
Volatility = 30%

Perhaps for future research a better model for the implicit method can be
developed.

36

11 Python Code

#Explicit Method

import math

import numpy as np

import pandas as pd

from scipy import stats

import matplotlib

from scipy.stats import norm

import matplotlib.pyplot as plt

import matplotlib.patches as mpatches

T = 1 #Time to Expiry in Years

E = 300#Strike

r = .03 #Risk Free Rate

sigma = .3 #Volatility

NAS = 100 #Number of Asset Steps - Higher is more accurate, but more

time consuming

ds = 2 * E / NAS #Asset Value Step Size

dt = (0.9/NAS/NAS/sigma/sigma) #Time Step Size

NTS = int(T / dt) + 1 #Number of time steps

value = np.zeros((int(NAS+1), int(NTS)))

price = np.arange(NAS*ds,-1,-ds)

value[:,-1]= np.maximum(price - E,0)

for x in range(1,NTS):

value[-1,-x-1] = value[-1,-x]* math.exp(-r*dt)

for x in range(1,int(NTS)):

for y in range(1,int(NAS)):

Delta = (value[y-1,-x] - value[y+1,-x]) / 2 / ds

value[y+1,-x]

Gamma = (value[y-1,-x] - (2 * value[y,-x]) + value[y+1,-x]) / ds

/ ds

Theta = (-.5 * sigma**2 * price[y]**2 * Gamma) - (r * price[y] *

Delta) + (r * value[y,-x])

value[y,-x-1] = value[y,-x] - Theta * dt

value[0,-x-1] = 2 * value[1,-x-1] - value[2,-x-1]

BSV = pd.DataFrame(value);BSV = BSV.set_index(price)

BSVPlot = BSV.sort_index(ascending=True)

BSVPlot[0].plot(color = ’blue’, linestyle = ’dashed’)

BSVPlot[NTS-1].plot(color = ’red’)

blue_patch = mpatches.Patch(color=’blue’, label=’Option

Price’);red_patch = mpatches.Patch(color=’red’, label=’Payoff at

Expirary’)

plt.legend(handles=[blue_patch,red_patch])

plt.axis([0,180, -5,90])

plt.title(’Call Option under Black Scholes’)

plt.ylabel(’Value of Option (\$)’);plt.xlabel(’Stock Price (\$)’)

plt.show()

print(BSVPlot[0])

37

#Implicit Method

import math

import numpy as np

import pandas as pd

from scipy import stats

import matplotlib

from scipy.stats import norm

import matplotlib.pyplot as plt

import matplotlib.patches as mpatches

T = 1 #Time to Expiry in Years

E = 100 #Strike

r = .03 #Risk Free Rate

sigma = .6 #Volatility

NAS = 150 #Number of Asset Steps - Higher is more accurate, but more

time consuming

ds = 2 * E / NAS #Asset Value Step Size

dt = (0.9/NAS/NAS/sigma/sigma) #Time Step Size

NTS = int(T / dt) + 1 #Number of time steps

value = np.zeros((int(NAS+1), int(NTS)))

price = np.arange(NAS*ds,-1,-ds)

value[:,-1]= np.maximum(price - E,0)

for x in range(1,NTS):

value[1,-x+1] = value[1,-x]* math.exp(-r*dt)

for x in range(1,int(NTS)):

for y in range(1,int(NAS)):

Delta = (value[y-1,-x] - value[y+1,-x]) / 2 / ds

value[y+1,x]

Gamma = (value[y-1,-x] - (2 * value[y,-x]) + value[y+1,-x]) / ds

/ ds

Theta = (-.5 * sigma**2 * price[y]**2 * Gamma) - (r * price[y] *

Delta) + (r * value[y,-x])

value[y,-x-1] = value[y,-x] - Theta * dt

value[0,-x-1] = 2 * value[1,-x-1] - value[2,-x-1]

BSV = pd.DataFrame(value); BSV = BSV.set_index(price)

BSVPlot = BSV.sort_index(ascending=True)

BSVPlot[0].plot(color = ’blue’, linestyle = ’dashed’)

BSVPlot[NTS-1].plot(color = ’red’)

blue_patch = mpatches.Patch(color=’blue’, label=’Option Price’)

red_patch = mpatches.Patch(color=’red’, label=’Payoff at Expirary’)

plt.legend(handles=[blue_patch,red_patch])

plt.axis([0,180, -5,90])

plt.title(’Call Option under Black Scholes’)

plt.ylabel(’Value of Option ($)’)

plt.xlabel(’Stock Price ($)’)

plt.show()

38

#exact solution

import math

import numpy as np

from scipy import stats

from scipy.stats import norm

def exactSolution(r,sigma,price,T,E):

d1 = (np.log(price/E) + T * (r+sigma**2/2)) / sigma*np.sqrt(T)

d2 = d1 - sigma*np.sqrt(T)

return price*np.exp(-0 * T)*norm.cdf(d1)-E*np.exp(-r*T)*norm.cdf(d2)

39

12 Course Evaluation

Student A:
Overall, I though this course was a pretty interesting one. I enjoyed learn-

ing new methods to solve equations and I liked how coding was included. There
are certainly a lot of real world applications I could think of to apply to this
course. I would have liked more practice with the concepts, and more time for
projects to be developed. Since I do have a computer science background I felt
this course was a great blend of mathematics and coding. However, for those
who have no coding background I can’t see how they would be successful in this
class. I really enjoyed the poster presentations, it was a great experience and
enjoyable to see all of the other student’s work. At this point, I am unable to
comment on the teamwork part of the course.

Student B:
To put it simply I have mixed feeling on the course, mostly good though.

I found the course challenging, interesting, and enjoyable. The material was
covered in great detail, giving me a better understanding of the this field of
mathematics. That said I do feel that the project should be started earlier,
and at the same time I feel that the prerequisites should be greater, or that
the student should be more aware of what is required from them in this course,
before hand. Other than that I would say this course was well put together.
I had also enjoyed the poster presentations, I felt that it was great experience
and it was great to see other student’s projects.

40

13 Bibliography

References

[1] Derivation of the Black Scholes Equation.
www.sjsu.edu/faculty/watkins/blacksch2.htm

[2] Gina Dura, Ana-Maria Mosneagu. Numerical Approximation of Black Sc-
holes Equation. 2010.

[3] John Hull. Options, Futures, and Other Derivatives. Prentice Hall, 2003.

[4] Computational Finance. 2011.
kodu.ut.ee/ rkangro/computationalf inance/finmat11/finmateng11.pdf

[5] The Black Scholes Equation.
people.math.gatech.edu/ meyer/MA6635/chap4.pdf

41

