
MAT 560 Final Report

Alexander Jansing, Aaron Gregory

May 5, 2018

1 Introduction
Numerical analysis provides us with a variety of tools that enable the discovery of approximate
solutions for problems that are prohibitively complex to solve analytically. Here we consider the
motion of an unforced supported Kirchhoff-Love plate lying flat on a two dimensional domain
Ω. We form a general solution out of the plate’s eigenmodes, and are able to recreate arbitrary
initial conditions.

A note on notation: we use bold symbols to represent vectors and tensors (e.g. r, u, σ)
and subscripts without boldface to represent components (e.g. r1, ui, σjk).

2 Overview of Kirchhoff-Love Plate Theory
Kirchhoff-Love plate theory describes the motion of plates (elastic solids resistant to both
bending and stretching) that are of negligible thickness. We consider a plate that is isotropic
and homogeneous, which means it is equally resistant to deformation in all directions at any
point in the domain, and of uniform density. These two restrictions greatly simplify the plate’s
equations of motion.

The deformation of a plate is defined as u = r′ − r, where r is the original position of a
point in the plate, and r′ is the position the point is moved to after being deformed. Consider
deformation as the sum of mid-surface and out-of-plane components, u = u‖+u⊥. A very thin
plate has the useful property that far less energy is required to produce significant deformations
along the surface normal than within the plane of the surface, so it is reasonable to assume
that |u‖| � |u⊥|. Therefore in some cases we will be able to ignore the lateral components of
the plate’s deformation, writing u ≈ w(x)n̂, where n̂ is the normal vector to the surface of our
plate.

One consideration that we avoid by making our plate thin is displacement due to torsion.
Here we will treat our plate as though it is a plane (on which restorative forces have no torque
component), and attempt to solve for how that plane is deformed. The plane we use as an
abstraction of our plate is called the plate’s neutral surface: it lies halfway between the two
faces of our plate, and is therefore mostly unaffected by any actual twisting forces which exist
in the plate.

The determining equations for our system arise form the interaction of two tensors: stress
and strain. Stress (denoted σ) is the distribution of force within the plate due to both internal
and external causes. We derive a formula for σ by noting that the total force acting on a
physical object can be calculated with an integral across the object’s surface. Surface and
volume integrals are only interchangeable when the integrand can be written as divergence,

1

and therefore we have F = div σ, where F (x) is the force acting on point x in our plane. We
will not give the proof here, but it is known that stress is symmetric: σij = σji.

The strain tensor (denoted ε) represents how much our plate "feels" its deformation:

2εij = ∂jui + ∂iuj +
∑
k

(∂iuk)(∂juk)

where ∂i denotes a partial derivative with respect to the ith component of x. Notice that strain,
like stress, is symmetric. When ∂iuj is small for all i and j (e.g. when our plate is not bent
sharply), we can approximate strain with 2εij = ∂iuj + ∂jui. This is the value we will use for
the rest of our derivations.

The elastic properties of an object are usually defined by the interaction of stress and
strain within it, that is, between the forces acting on the object and the object’s reaction.
To understand the difference between strain and deformation, consider a plate that has been
folded. Deformation on the crease is very small, since those points were not moved far when
the plate was bent. However, the crease is the region where strain is largest, and accordingly
where the majority of the restorative forces originate. We are interested in balancing internal
forces F , and strain ε captures more important information about force than does deformation
u.

Let us assume that our plate obeys Hooke’s law, which states that stress and strain are
linearly related. Using our previous knowledge that u ≈ w(x)n̂ (which means that we can
assume displacement to be uniform along n̂), and choosing our coordinate frame such that
n̂ = ẑ, we can now write some components of stress in terms of x, y, and z:

σzx = µεzx = 0

σzy = µεzy = 0

σzz = 0

Where Hooke’s law is used to represent stress as a multiple of strain. Applying our linearized
approximation of strain, we learn that ∂zux = −∂xuz and ∂zuy = −∂yuz. Since (according to
our choice of coordinates) uz = w(x, y), which is not a function of z, we must have ux = −z∂xw
and uy = −z∂yw.

Now we can find the deformation vector, and consequently the entire strain tensor, in terms
of w(x, y). We use this information to find a solution which minimizes the free energy of our
plate while satisfying Newton’s second law (div σ = ρẅ, where ρ is density). This involves
two lengthy manipulations, which we will not detail here, but can be found in other resources
[LHLL06, LL86]. Our requirement that free energy be minimized reflects our wish to find
physically applicable solutions (physical objects naturally take, or move toward, low energy
states). The free energy of our plate is given with the formula

Fpl =
Eh2

24(1− ν2)

∫
Ω

(
∂2
xw + ∂2

yw
)2

+ 2(1− σ)
(
(∂x∂yw)2 − (∂2

xw)(∂2
yw)
)
dx

Where E is Young’s modulus (related to the stiffness of our plate), h is the thickness of the
plate, and ν is Poisson’s ratio (which relates compression along one axis with expansion along
all other axes). In order to minimize this value, the deflection w of our plate must satisfy the
plate equation:

Eh3

12(1− ν2)
∆2w + ρẅ = 0, ∀x ∈ Ω

2

Where usually Eh3

12(1−ν2)
is written as a single constant D, called the bending rigidity of our

plate. This single equation is enough to determine a valid deformation of a plate, but it is
underdetermined (its solutions are not unique). To solve it uniquely we must add boundary
conditions.

3 Derivation of Model
Since our plate is supported, we add a simple boundary condition: w = 0, ∀x ∈ ∂Ω. For
reasons that will become apparent during our numerical analysis, we also require that ∆w = 0,
∀x ∈ ∂Ω. Our final set of determining equations for our unforced Kirchhoff-Love plate is:

ρ

D
ẅ + ∆2w = 0, ∀x ∈ Ω

w = ∆w = 0, ∀x ∈ ∂Ω

Because these equations are linear, we can represent their general solution as a superposition of
our plate’s eigenmodes (e.g. if we solve for the eigenmodes, we have fully solved our problem).
An eigenmode, also called an eigenfunction or vibrational mode, is a deformation of our plate
where every point moves sinusoidally with the same phase. The simple harmonic motion that
defines an eigenmode allows us to perform separation of variables on our determining equations
with w = cos(ωt)u(x). A short manipulation then brings us to ∆2u = ρω2

D
u = λ2u. Already we

can see the plate equation taking the form of an eigenvalue problem. To be clear: we do not
know which eigenvalues λ will produce a solvable equation. That’s why we refer to ∆2u = λ2u
as an eigenvalue problem.

4 Discretization
Now we take our eigenvalue problem and perform reduction of order:[

0 ∆
∆ 0

] [
u
v

]
= λ

[
u
v

]
But perhaps this seems unjustified - by adding a new variable to solve for, have we not increased
the complexity of our problem? Well, yes and no. It is possible for reduction of order to
make our problem harder to solve analytically. But we are considering a fourth order PDE
defined on an arbitrarily complex domain. The eigenvalue problem as it stood was already
prohibitively complex for symbolic discovery of solutions. Our goal, therefore, is not to find a
perfect analytical description of a plate’s motion given any domain, but only to approximate
its motion. This approximation will be done with a computer, and as a result our chief concern
is how well our model lends itself to computation (not symbolic manipulation).

4.1 Finite Difference Method

One of the simplest tools of numerical analysis is the method of finite differences (FDM).
The backing concept here is that if it is too difficult to find a full solution to a problem (e.g.
the value of u at every point in Ω), then perhaps we can lessen the problem’s complexity by
restricting our domain to an easier to handle subdomain. Instead of being able to sample our
solutions anywhere, we only look for their values at specific points (our subdomain is defined
by the finite differences between the sampling points). By using discretizations of continuous

3

operators (converting our differential equations into difference equations), FDM constructs a
matrix of the relationships between points in our subdomain. Solving the matrix problem
Ax = b will produce an approximation of the solution to our PDE.

FDM has conceptual simplicity going for it, but it has few other benefits. One of its signif-
icant drawbacks is its inability to adapt well to complex domains. Suppose our domain is very
complicated in one region and very simple in another. In order to achieve a reasonable accuracy
we would have to lower the distance between points across the entire mesh, wasting computa-
tional resources on the simple areas where a coarse mesh would suffice. Finite differences also
require special consideration at the boundaries of our domain, which needlessly complicates
our computations. Due to this lack of flexibility, we chose not to use finite differences in our
numerical analysis, opting instead to use the method of finite elements.

4.2 Finite Element Method

The method of finite elements (FEM) borrows a few core ideas from FDM, but applies them
in a very different way. Whereas finite differences operates by constricting our domain, finite
elements finds a result by assuming that our solution lives in a finite dimensional function space.
This solves the problems presented by FDM, because our function space can be constructed in
a manner that gives high accuracy in one region of our domain, and low accuracy in another.
Since the boundary of our domain is enforced by the very choice of the function space, we can
completely avoid our boundary value requirements after deciding on our function space.

FEM splits the problem of approximating a differential equation into two computational
steps, which when handled separately are more efficient than when handled together. First we
discretize our domain by defining a mesh on it, and we use that mesh to define our function
space. Secondly we solve for our solution as a member of our function space, constructing a
matrix of the dependencies that have to be satisfied, and solving just like in FDM. This allows
us to deal separately with domain-related matters and solution-related matters.

We do not have many constraints in our choice of function space, but there are some
limitations. For example, we must show that as the dimension of our space approaches infinity,
our approximate solution converges to the true solution. There are certain common function
spaces where this is guaranteed, and we choose ours from among them. We can, however, safely
define our function space with emphasis on arbitrary regions in our domain, which allows us to
focus computational resources where they are needed.

4.2.1 Weak Formulation

Consider our eigenvalue problem:
[

0 ∆
∆ 0

] [
u
v

]
= λ

[
u
v

]
. In its current state, this equation

requires that u and v both be twice continuously differentiable. By finding what is called a
weak formulation, we can reduce this requirement. First we integrate across our domain and
multiply our eigenproblem by two arbitrary test functions:∫

Ω

[
φ
ϕ

]T [
0 ∆
∆ 0

] [
u
v

]
dx =

∫
Ω

λ

[
φ
ϕ

]T [
u
v

]
dx

Since φ and ϕ are arbitrary, we can impose whatever conditions on them we want. In particular,
let’s assume that φ and ϕ are both continuously differentiable. That means that we can
do integration by parts (which is why we required earlier that ∆w = 0, since otherwise our

4

boundary conditions would not vanish):

−
∫

Ω

∇v · ∇φ+∇u · ∇ϕ dx =

∫
Ω

λuφ+ λvϕ dx

Now we have a form of our eigenproblem that only requires u and v to be once continuously
differentiable. This will give us greater freedom when choosing our function space.

4.2.2 Mesh Creation

Geometries and meshes are easily created with pygmsh[Sch]. The code below (also seen in
appendix 8.2.1) creates a circular plate with no deformations.

geom = pygmsh.opencascade.Geometry(
characteristic_length_min=0.1,
characteristic_length_max=0.1,
)

outerDisk = geom.add_disk([0.0, 0.0, 0.0], 0.5)
print(geom.get_code())
points, cells, point_data, cell_data, field_data = pygmsh.generate_mesh(geom,

↪→ geo_filename = "plate.geo")

Modifications to a mesh are generally easy to implement (see appendices 8.2.2, 8.2.3). We
do not have any requirements for our plate geometry in our code, so different meshes can be
used interchangeably.

4.2.3 Choice of Function Space

Now that we have a mesh of our domain and we know that our test functions must be once
continuously differentiable, we can pick what our function space will be. We chose a set of
Continuous Galerkin functions, which are members of the first order (linear) Lagrange family
of interpolation polynomials. Our final solution will be constructed out of a set of piecewise
linear functions - they can be thought of as pyramid functions for every point in our mesh.

Now we can apply our function space (which has a finite number of elements) to our weak
formulation. This is done in two ways: first (as we have said), we assume that our solutions
will fall in our function space:

(u, v) =
∑
i

(aiφi, aiϕi) ∈ F = span{(φi, ϕi)}

Second, we only require that our weak formulation holds when our test functions (φ, ϕ) are
in our function space. This is where the benefits of using FEM rather than FDM are clearly
visible. In the method of finite elements, discretization does not mean restricting our domain,
but only restricting our test functions to our mesh–defined function space, which is arbitrarily
close to the exact solution.

−
∫

Ω

∇v · ∇φi +∇u · ∇ϕi dx =

∫
Ω

λuφi + λvϕi dx

Notice that our weak formulation is linear in terms of u, v, φ and ϕ, and therefore is
also linear in terms of ai. This means that we can write our full discretized eigenproblem
as a set of linear equations, which will determine the weights ai of the linear combination of

5

basis functions that defines u and v. Substituting in u =
∑

i aiφi and v =
∑

i aiϕi, our weak
formulation becomes

−
∫

Ω

∑
i

ai∇ϕi∇ϕj + ai∇φi∇φj dx =

∫
Ω

λ
∑
i

aiϕiφj + aiφiϕj dx =

∫
Ω

λ
∑
i

aiCij dx

Both sides are still linear in ai, so we have a solvable system of equations. After putting
this system into matrix form we solve for the eigenvalues λi and the eigenvectors ei. Both of
these have physical interpretations: the eigenvectors define vibrational forms of the plate we’re
modeling, and the eigenvalues tell us at what frequency the associated forms vibrate.

5 Computation
To begin our computational work, we used gmsh to create discretizations of several 2–dimensional
plates. This was implemented with the pygmsh python package (see Section 4.2.2).

Figure 1: Meshes created with gmsh.

In conjunction with gmsh, we used FEniCS’s python package, dolfin, to convert the msh files
to an xml format.

Once the xml files were created, the number of vertices was recorded (manually) in relation
to how many eigenvalues and vectors were found from the mesh. This data allowed us to predict
how demanding the computation would be for a given mesh, and how much accuracy could be
reasonably attained, given the hardware and time available.

The xml file is read in and converted to a dolfinMesh object, then provided to the EigenSolver
class (see 8.2.4) along with two FiniteElement objects. From here, we provide a method call
that prints minimal output and returns two arrays of eigenvectors and eigenvalues (E and λ).

Eigenvectors:
E =

[
e0 e1 e2 · · · en−1

]
Individual Eigenvector:

ei =
[
ei0 ei1 ei2 · · · ei,n−1

]
Eigenvalues:

λ =
[
λ0 λ1 λ2 · · · λn−1

]
Then the mesh, one of the FiniteElement objects, E, and λ are passed to the Simulator object

(see 8.2.5). The Simulator automatically:

6

https://fenicsproject.org/olddocs/dolfin/1.6.0/python/programmers-reference/cpp/fem/FiniteElement.html

Figure 2: Some eigenfunctions found with FEniCS.

1. creates a FunctionSpace based on the mesh and the FiniteElement object,

2. interpolates a function from the given Expression within the FunctionSpace,

3. and the eigenbasis vectors (ei·~x
ei·ei portions of computation of w in Section 6).

After the constructor finishes the steps above, a call of the evaluate method with a time t and
Point x (optional) will return the displacement at time t and at Point x (or a function if x is
not supplied).

6 Recreation of Initial Conditions
After we have computed the set of our plate’s eigenmodes, recreating initial conditions is a
relatively simple matter. Suppose we want initial displacement p(x) and initial velocity v(x).
With eigenfunctions ei(x) and vibrational frequencies ωi =

√
D
ρ
λi, we can write our final

solution as
w(x, t) =

∑
i

(
cos(ωit)

〈ei, p〉
〈ei, ei〉

ei(x) + sin(ωit)
〈ei, v〉
〈ei, ei〉

ei(x)

ωi

)

Figure 3: Time evolution (moving rightward) from initial position and velocity.

7 Results
Through experimentation, creating meshes of varying sizes and finding the number of eigenval-
ues and vectors associated with each mesh, there seems to be a strictly linear (1 : 2) correlation
between the number of vertices and the number of eigenvalues found from each mesh.

7

https://fenicsproject.org/olddocs/dolfin/1.6.0/python/programmers-reference/functions/functionspace/FunctionSpace.html
https://fenicsproject.org/olddocs/dolfin/1.6.0/python/programmers-reference/functions/expression/Expression.html
https://fenicsproject.org/olddocs/dolfin/1.6.0/python/programmers-reference/cpp/mesh/Point.html

Figure 4: Number of Vertices to Number of Eigenvalues. ??

This two-to-one relationship between the number of eigenvalues and vertices of the mesh
shows that we are finding all available eigenvalues, since our matrix stores information for both
u and v, each of which has one element per mesh point.

8

8 Appendix

8.1 Data Table: Mesh Vertices vs. Eigenvalues

Data was generated from the left mesh of Figure 1 as the base geometry. Smaller Element size
factors were used ([1, 0.9, 0.8, · · · , 0.2]) to create finer meshes (more vertices).
vertices eigenvalues

126 252
143 286
160 320
196 392
326 652
385 770
496 992
1012 2024
2449 4898

8.2 Code Listings

Below is some of the core code we developed. Some pieces of code which are not relevant to
the numerical work being done have been removed for brevity. The full code can be accessed
at https://github.com/gregory2718/SUNY_MAT560 or through the links provided above each
code snippet.

8.2.1 plate.py

This code creates a circular plate with no deformations.

import pygmsh

geom = pygmsh.opencascade.Geometry(
characteristic_length_min=0.1,
characteristic_length_max=0.1,
)

outerDisk = geom.add_disk([0.0, 0.0, 0.0], 0.5)
print(geom.get_code())
points, cells, point_data, cell_data, field_data = pygmsh.generate_mesh(geom,

↪→ geo_filename = "plate.geo")

8.2.2 donut.py

This code creates a circular plate with a hole in the middle.

import pygmsh

geom = pygmsh.opencascade.Geometry(
characteristic_length_min=0.1,
characteristic_length_max=0.1,

9

https://github.com/gregory2718/SUNY_MAT560
https://github.com/gregory2718/SUNY_MAT560/blob/master/project/src/gmsh/demo/meshes/plate/plate.py
https://github.com/gregory2718/SUNY_MAT560/blob/master/project/src/gmsh/demo/meshes/donut/donut.py

)

outerDisk = geom.add_disk([2.0, 0.0, 0.0], 1.0)
innerDisk = geom.add_disk([2.0, 0.0, 0.0], 0.5)
flat = geom.boolean_difference([outerDisk], [innerDisk])
geom.extrude(flat, [0, 0, 0.3])

points, cells, point_data, cell_data, field_data = pygmsh.generate_mesh(geom,
↪→ geo_filename = "donut.geo")

print(geom.get_code())

8.2.3 swiss_cheese.py

This code creates a circular plate with a number of random holes punched in it to provide a
non-trivial case of a plate.

import pygmsh
import random
import time

geom = pygmsh.opencascade.Geometry(
characteristic_length_min=0.1,
characteristic_length_max=0.1,
)

random.seed(int(time.time()))

outerDisk = geom.add_disk([0.0, 0.0, 0.0], 2.0)
for i in range(random.randint(10,20)):

x = random.random()*2.
y = random.random()*2.
quadrant = random.randint(1,4)
if quadrant == 1:

quadrant = [1,1]
elif quadrant == 2:

quadrant = [1,-1]
elif quadrant == 3:

quadrant = [-1,-1]
elif quadrant == 4:

quadrant = [-1,1]
size = random.random()
innerDisk = geom.add_disk([x*quadrant[0], y*quadrant[1], 0.0], size

↪→ *.75)
outerDisk = geom.boolean_difference([outerDisk], [innerDisk])

geom.extrude(outerDisk, [0, 0, 0.3])

10

https://github.com/gregory2718/SUNY_MAT560/blob/master/project/src/gmsh/demo/meshes/swiss_cheese/swiss_cheese.py

points, cells, point_data, cell_data, field_data = pygmsh.generate_mesh(geom,
↪→ geo_filename = "swiss_cheese.geo")

8.2.4 polyplate package – EigenSolver.py

Class that takes two sets of FiniteElements and a mesh. And from that, it can generate the
eigenvectors and eigenvalues.

from dolfin import *
from dolfin.cpp.mesh import *
from mshr import *
import pylab
import numpy as np

class EigenSolver:
def __init__(self, U, V, mesh):

self.U = U
self.V = V
self.mesh = mesh

def getEigenVectorValue(self, saveData = False, saveDataDir = None,
↪→ saveDateName = "output"):

if(self.mesh == None):
print(’Mesh␣not␣present.’)
exit()

if(self.U == None):
self.U = FiniteElement(’CG’, triangle, 1)

if(self.V == None):
self.V = FiniteElement(’CG’, triangle, 1)

W = FunctionSpace(self.mesh, self.V * self.U)

class DirichletBoundary(SubDomain):
def inside(self, x, on_boundary):

return on_boundary

Define boundary condition
u0 = Constant(0.0)
boundaryCondition1 = DirichletBC(W.sub(0), u0,

↪→ DirichletBoundary())
boundaryCondition2 = DirichletBC(W.sub(1), u0,

↪→ DirichletBoundary())

Define the bilinear form
(u, v) = TrialFunction(W)
(f1, f2) = TestFunction(W)
a = -(dot(grad(u), grad(f2)) + dot(grad(v), grad(f1)))*dx
L = (u*f1 + v*f2)*dx

11

https://github.com/gregory2718/SUNY_MAT560/blob/master/project/src/polyplate/EigenSolver.py

Create the matrices
A = PETScMatrix()
b = PETScMatrix()
assemble(a, tensor = A)
assemble(L, tensor = b)
boundaryCondition1.apply(A)
boundaryCondition2.apply(A)

Create eigensolver
eigensolver = SLEPcEigenSolver(A, b)

Compute all eigenvalues of A x = \lambda x
eigensolver.solve()

eigenVectors = []
eigenValues = []

If we’re saving the data, make the directories to save the
↪→ data to.

if saveData:
if saveDataDir == None:

saveDataDir = ’eigen’
mkdirs(saveDataDir)

u = Function(W)
for i in reversed(range(eigensolver.get_number_converged())):

r, c, rx, cx = eigensolver.get_eigenpair(i)
eigenVectors += [rx.vec().getArray()]
eigenValues += [r]
if saveData:

u.vector()[:] = rx
plot(u.sub(0))
save images
pylab.savefig(’%s/images/%s%d_%04d.png’ % (

↪→ saveDateName, saveDateName, m, i),
bbox_inches=’tight’)

eigenVectors = np.array(eigenVectors)
eigenValues = np.array(eigenValues)

return eigenVectors, eigenValues

8.2.5 polyplate package – Simulator.py

from dolfin import *
from dolfin.cpp.mesh import *
from mshr import *

12

https://github.com/gregory2718/SUNY_MAT560/blob/master/project/src/polyplate/Simulator.py

from math import sin, cos
import numpy as np

class Simulator():
"""docstring for Simulator"""
def __init__(self, mesh, U, eigenVectors, eigenValues,
pExpr = Expression(’sin(x[0])’, degree=1),
vExpr = Expression(’cos(x[0])’, degree=1), C = 1):

Test for PETSc and SLEPc
if not has_linear_algebra_backend("PETSc"):

print("DOLFIN␣has␣not␣been␣configured␣with␣PETSc.␣
↪→ Exiting.")

exit()

if not has_slepc():
print("DOLFIN␣has␣not␣been␣configured␣with␣SLEPc.␣

↪→ Exiting.")
exit()

parameters[’reorder_dofs_serial’] = False
self.timeScale = 1.0 / C
self.fSpace = FunctionSpace(mesh, U)
self.eVecs = eigenVectors
self.eVals = eigenValues
self.pVec = fem.interpolation.interpolate(pExpr, self.fSpace).

↪→ vector()
self.vVec = fem.interpolation.interpolate(vExpr, self.fSpace).

↪→ vector()
self.pEig = self.inEigenBasis(self.pVec)
self.vEig = self.inEigenBasis(self.vVec)
for i in range(len(self.eVals)):

self.vEig[i] /= self.eVals[i]

def inEigenBasis(self, vec):
return np.array([np.dot(vec, e) / np.dot(e, e) for e in self.

↪→ eVecs])

def vecAtTime(self, t):
S = np.zeros(self.eVecs[0].shape)
for i in range(len(self.eVecs)):

position component
S += cos(self.eVals[i]*t)*self.pEig[i]*self.eVecs[i]
velocity component
S += sin(self.eVals[i]*t)*self.vEig[i]*self.eVecs[i]

return S

def upperBound(self):

13

m = np.zeros(self.eVecs[0].shape)
for i in range(len(self.eVecs)):

m += np.abs(self.pEig[i]*self.eVecs[i])
m += np.abs(self.vEig[i]*self.eVecs[i])

return np.max(m)

def evaluate(self, t, x = None):
f = Function(self.fSpace)
f.vector().set_local(self.vecAtTime(t * self.timeScale))
f.update()
if x is None:

return f
else:

return f(Point(x[0], x[1]))

14

References
[LHLL06] P Lu, LH He, HP Lee, and C Lu. Thin plate theory including surface effects.

International Journal of Solids and Structures, 43(16):4631–4647, 2006.

[LL86] LD Landau and E Lifschitz. Theory of elasticity, 1986.

[Sch] Nico Schlömer. pygmsh. 2018. pypi, pypi.org/project/pygmsh/.

15

	Introduction
	Overview of Kirchhoff-Love Plate Theory
	Derivation of Model
	Discretization
	Finite Difference Method
	Finite Element Method
	Weak Formulation
	Mesh Creation
	Choice of Function Space

	Computation
	Recreation of Initial Conditions
	Results
	Appendix
	Data Table: Mesh Vertices vs. Eigenvalues
	Code Listings
	plate.py
	donut.py
	swiss_cheese.py
	polyplate package – EigenSolver.py
	polyplate package – Simulator.py

