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1 MODELING

The goal of solving any differential equation is to be able to accurately predict the be-
havior of the system at any given time. This project attempts to accurately model the
position of a double pendulum over time for a range of initial conditions. While seem-
ingly a simple task, the double pendulum system displays chaotic behavior such that small
variations between two initial conditions can lead to large discrepancies over time. The
difficulty of analyzing a model of this system is increased by the lack of an analytic solution
to the problem. Without a known solution to compare to, determining the error of discrete
simulations is more complicated than simply finding the difference.

Employing a computer to solve differential equations requires that a numerical method
be chosen that is able to discretely calculate values for a continuous differential equation.
Some error is always expected with evaluating a continuous function in a discrete manner;
however, the error of individual methods varies widely and the criteria for choosing the best
method must be carefully considered.

To determine error in most cases, the numerical solution is compared to the analytic
solution with the difference between them representing the error of the numerical method.
Without an analytic solution to the differential system, error analysis of numerical methods
is limited in scope. Numerical methods can be compared to each other to determine the
error between them, and a novel technique known as backwards error analysis can be used
to determine how far from the original initial conditions the computed numerical solution’s
initial conditions stray.

While the analysis of numerical methods is valuable, the more interesting portion of this
project is the investigation of the chaotic behavior of this differential system. Questions we
seek to answer are: how is a system determined to be chaotic? Is a system always chaotic/at
what point does it become chaotic? After attempting to answer these questions a parameter
sweep is performed on the double pendulum system to show how chaotic behavior changes
as the system is altered.

1 Modeling

The subject of this study is the double penedulum depcited in Figure 1. It consists of a
sequence of connected rods and masses that is attached at one end to a fixed pivot joint.
The masses are assumed to be well approximated as point masses, the rods are assumed
to be massless, and the pivot joint is assumed to be frictionless. The system is allowed
to swing freely in a gravitational field pointing downward. In particular, the mass in the
bottom arm, m2, is not obstructed by the rod in the top arm. It can trace out a complete
circle centered at mass m1 without changing direction.

There are various ways of deriving the equations of motion for this system. Newtonian
mechanics analyzes the problem using forces, positions, and velocities that are naturally de-
scribed using a global coordinate system. Simply drawing the requisite free body diagrams,
accounting for all the forces, and applying Newton’s second law of motion will result in
an underdetermined system of equations. This stems from the fact that double pendulum
has four degrees of freedom and is completely described by the variables θ1, θ2, θ̇1, and θ̇3.
An analysis couched within a Cartesian or polar coordinate system describes the system
using eight quantities, namely the components of the position and velocity vectors for each
mass. One way around this problem is to impose additional constraints like l21 = x21 + y21
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1.1 Hamiltonian Systems 1 MODELING
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Figure 1: Double Pendulum

and l22 = (x2 − x1)
2 + (y2 − y1)

2. Two additional constraints are needed to reduce the
degrees of freedom to four. This method will certainly work, but for the double pendulum
it is analytically obtuse and for pendula with more masses it quickly become untenable.
Instead, we opted for the energy based approach offered by Hamiltonian mechanics.

1.1 Hamiltonian Systems

Phenomena from molecular dynamics, classical mechanics, quantum mechanics, fluid dy-
namics, image processing, and many more are described by ODEs that constitute a Hamil-
tonian system. Systems of this variety are entirely characterized by a single scalar function
H, called the Hamiltonian, which takes two vector arguments: the canonical positions q
and the canonical congujate momenta p. The equations of motion are given by Hamilton’s
equations

q̇ = ∇pH(p, q), ṗ = −∇qH(p, q) . (1)

If we let

y =

[
p
q

]
and J =

[
0 I
−I 0

]
,

then these equations can be alternatively written as

ẏ = J−1∇H(y) .

Canonical coordinates are a set of parameters that describe a system at any point in
time which satisfy

{qi, qj} = 0, {pi, pj} = 0, {qi, pj} = δij ,

where {·, ·} is the Poisson bracket and δij is the Kronecker delta. Generalized coordinates
are an alternative, albeit related, way of parameterizing the model that describe the con-
figuration of the system relative to a reference configuration. The generalized velocities are

4



1.1 Hamiltonian Systems 1 MODELING

defined to be the time derivative of the generalized coordinates. In terms of position, the
generalized and canonical formulations are equivalent. Concretely, both the canonical posi-
tions and generalized coordinates in Figure 1 are θ1 and θ2, the generalized velocities are θ̇1
and θ̇2, and the canonical congujate momenta p1 and p2 are related to, but distinct from, θ̇1
and θ̇2, respectively. Transforming the velocties into the momenta requires an understand-
ing of the relationship between Hamilton’s approach and that of his French contemporary
Lagrange.

Lagrangian mechanics is a reformulation of Newtonian mechanics and served as the
precursor to Hamilton’s formulation. The theory uses generalized coordinates and charac-
terizes the system’s dynamics by a single scalar function called the Lagrangian, denoted
L. Within the domain of classical mechanics, the Lagrangian is known to be the difference
between kinetic energy T and the potential energy U ,

L = T − U . (2)

The Hamiltonian and Lagrangian formulations are related by the Legendre transform

pi =
∂L
∂θ̇i

H =
∑

piθi − L . (3)

Under this transformation, the Hamiltonian of a mechanical system is found to be equivalent
to the total energy of the system. That is, it is equal to the sum of all kinetic and potential
energies.

1.1.1 Properties of Hamiltonian Systems

There are two properties of Hamiltonian systems that play a central role in the numerical
analysis undertaken here. The first of these is presented in the following proposition.

Proposition 1. The Hamiltonian is invariant along solution trajectories,

Ḣ = 0

Proof.

Ḣ =
∂H
∂q
q̇ +

∂H
∂p
ṗ = ṗq̇ − q̇ṗ = 0

In light of the fact that the Hamiltonian of a mechanical system is equivalent to the total
energy in that system, proposition 1 is simply a reflection of the physical law of conservation
of energy.

A large class of Hamiltonian systems are endowed with a special geometric structure;
they are symplectic. In short, symplecticity in the current context means that the total
area of regions in phase space is preserved as the system evolves forward in time. But, to
be more precise we first define what a linear symplectic map is.

5



1.1 Hamiltonian Systems 1 MODELING

Definition 1. A linear map, whose associated matrix is A, is said to be symplectic if

ATJA = J

where

J =

[
0 I
−I 0

]
Since J is a block matrix whose component matrices all commute with each other, it

can be shown that the determinat of J is given by

detJ = det(00−−II) = det I = 1 .

Therefore, given a matrix A which defines a linear symplectic transform,

det (ATJA) = detJ

(detAT )(detJ)(detA) = 1

(detAT )(detA) = 1

(detA)2 = 1

detA = ±1 .

Consequently, symplectic linear maps preserve volume. Next we extend the definition to a
differentiable functions.

Definition 2. A differentiable function ϕ : Ω ⊂ R2d → R2d is said to be sympletic if its
Jacobian matrix is everywhere sympletic

∇ϕTJ∇ϕ = J for all y ∈ Ω

Up to this point, symplecticity has been defined in a general setting. In order to under-
stand its relevance to Hamiltonian systems we must first define the flow map ϕt(y0).

Definition 3. For an autonomous ordinary differential equation ẏ = f(y) where y ∈ Rd,
the flow map ϕt(y0) : R2d → R2d takes the initial condition y0 to the value y(t),

ϕt(y0) = y(t)

The definition of the flow map can be extended to apply to measurable sets with nonzero
measure. That is, in addition to the single vector y0, one can also flow regions of well-defined
volume through phase space. Given a set of initial conditions Ω ⊂ R2d the flow of that set
is

ϕt(Ω) = {y(t) | for all y0 ∈ Ω} .

Consider a set Ω ⊂ R2d of in phase space which is evolved forward in time. Next, construct
the sets Ωk by projecting Ω onto each of the congujate (pk, qk)-planes,

Ωk =

{[
ωk
ωk+d

] ∣∣∣∣ ∀ω ∈ Ω

}
k = 1, ..., d .

6



1.2 Double Pendulum 1 MODELING
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Figure 2: Double Pendulum

The symplectic property goes beyond volume preserving and implies that the sum of the
oriented (i.e. signed) area of each of these sets,

area(Ω1) + area(Ω2) + · · ·+ area(Ωk) (4)

is invariant as the region Ω flows through phase space. In other words, for any measureable
set of initial conditions whose measure is nonzero, the area of the projection onto any
single congujate plane will vary as the system evolves, but the combined signed area of all
projections will remain constant. Not every Hamiltonian system enjoys this property, but
fortuantley a large class of systems do and the requisite condition is given in the following
theorem attributed to Poincare.

Theorem 1. If H is twice continuously differentiable, then the corresponding flow map
ϕt(y0) is symplectic.

1.2 Double Pendulum

The equations governing the double pendulum shown in Figure 2 are derived by turning
Hamilton’s crank: define the Lagrangian in terms of the kinetic and potential energy, apply
the Legendre transform to get the Hamiltonian, and then evaluate Hamilton’s equations to
get the equations of motion.

1.2.1 Lagrangian

The potential energy of a mass is taken to be zero when the vertical displacement between
the mass and the pivot joint is zero. Therefore, the potential energy of each mass is,

U1 = −m1h1g = m1l1g cos θ1

U2 = m2(h1 + h2)g = m2g(l1 cos θ1 + l2 cos θ2),

7



1.2 Double Pendulum 1 MODELING

and the total potential energy is

U = U1 + U2 = −l1(m1 +m2)g cos θ1 − l2m2g cos θ2 . (5)

The kinetic energy of a mass is T = 1/2mv2, where v is the linear speed of the mass.
The speed of the first mass, v1, is easily obtained in terms of the generalized velocity θ̇1,

T1 =
1

2
m1v

2
1 =

1

2
m1(l1θ̇1)

2 =
1

2
m1l

2
1θ̇

2
1 .

Finding the speed of the second mass is slightly more involved. After writing the position
of m2 in a Cartesian coordinate system located at the pivot joint,

x2 = l1 sin θ1 + l2 sin θ2

y2 = l1 cos θ1 + l2 cos θ2

the linear velocity is calculated by differentiating with respect to time,

v2 =

[
ẋ2
ẏ2

]
=

[
l1 cos θ1 l2 cos θ2
−l1 sin θ1 −l2 sin θ2

] [
θ̇1
θ̇2

]
.

With the velocity in hand, the kinetic energy of the second mass is

T2 =
1

2
vT2

[
m2 0
0 m2

]
v2

=
1

2

[
θ̇1 θ̇2

] [l1 cos θ1 −l1 sin θ1
l2 cos θ2 −l2 sin θ2

] [
m2 0
0 m2

] [
l1 cos θ1 l2 cos θ2
−l1 sin θ1 −l2 sin θ2

] [
θ̇1
θ̇2

]
=

1

2
m2

[
l21θ̇

2
1 + 2l1l2 cos(θ1 − θ2)θ̇1θ̇2 + l22θ̇

2
2

]
.

So, the total kinetic energy is

T = T1 + T2 =
1

2

[
l21(m1 +m2)θ̇

2
1 + 2l1l2m2 cos(θ1 − θ2)θ̇1θ̇2 + l22m2θ̇

2
2

]
. (6)

To arrive at the Lagrangian for the double pendulum, all that remains to be done is to
substitute equations (5) and (6) into the general form of the Lagrangian given by equation
(2),

L =
1

2

[
l21(m1 +m2)θ̇

2
1 + 2l1l2m2 cos(θ1 − θ2)θ̇1θ̇2 + l22m2θ̇

2
2

]
+ l1(m1 +m2)g cos θ1 + l2m2g cos θ2 .

1.2.2 Hamiltonian

Next, the Legendre transform in equation (3) is used to compute the canonical congujate
momenta and the Hamiltonian. The momenta are

p1 =
∂L
∂θ̇1

= l21(m1 +m2)θ̇1 + l1l2m2 cos(θ1 − θ2)θ̇2

p2 =
∂L
∂θ̇2

= l1l2m2 cos(θ1 − θ2)θ̇1 + l22m2θ̇2

8



1.2 Double Pendulum 1 MODELING

which can be written as the matrix equation

p =

[
p1
p2

]
=

[
l21(m1 +m2) l1l2m2 cos(θ1 − θ2)

l1l2m2 cos(θ1 − θ2) l22m2

] [
θ̇1
θ̇2

]
. (7)

Similarly, the Legendre transform can be written in matrix notation as

H = pT θ̇ − L . (8)

Evaluating the first term yields,

pT θ̇ =
[
θ̇1 θ̇2

] [ l21(m1 +m2) l1l2m2 cos(θ1 − θ2)
l1l2m2 cos(θ1 − θ2) l22m2

] [
θ̇1
θ̇2

]

pT θ̇ = l21(m1 +m2)θ̇
2
1 + 2l1l2m2 cos(θ1 − θ2)θ̇1θ̇2 + l22m2θ̇

2
2 (9)

and after substituting equation (9) into equation (3) the Hamiltonian for the double pen-
dulum is found to be

H =
1

2

[
l21(m1 +m2)θ̇

2
1 + 2l1l2m2 cos(θ1 − θ2)θ̇1θ̇2 + l22m2θ̇

2
2

]
(10)

− l1(m1 +m2)g cos θ1 − l2m2g cos θ2 . (11)

We note that, as it should be, the Hamiltonian is nothing more than

H = T + U .

At this stage H is expressed in terms of position θ and velocity θ̇. Our last task is to
replace the velocities with the corresponding momenta by solving equation (7) for θ̇ and
then substituting into equation (10). For notational clarty let

A := l21(m1 +m2), B := l1l2m2 cos(θ1 − θ2), and C := l22m2,

so that equation (7) can be written compactly as,[
p1
p2

]
=

[
A B
B C

] [
θ̇1
θ̇2

]
and equation (10) becomes,

H =
1

2

(
Aθ̇21 + 2Bθ̇1θ̇2 + Cθ̇22

)
− l1(m1 +m2)g cos θ1 − l2m2g cos θ2 .

Calculating θ̇ amounts to a straightforward matrix inversion,[
θ̇1
θ̇2

]
=

1

AC −B2

[
C −B
−B A

] [
p1
p2

]

9



1.2 Double Pendulum 1 MODELING

which after a bit of algebra evaluates to

θ̇1 =
l22m2p1 − l1l2m2 cos(θ1 − θ2)p2
l21l

2
2m2

(
m1 −m2 sin2(θ1 − θ2)

) (12)

θ̇2 =
−l1l2m2 cos(θ1 − θ2)p1 + l21(m1 +m2)p2

l21l
2
2m2

(
m1 −m2 sin2(θ1 − θ2)

) . (13)

Because the potential energy does not depend on θ̇, the task of writing the Hamiltonian
in terms of p is reduced to substituting equations (12) and (13) into the kinetic energy,

T =
1

2

(
Aθ̇21 + 2Bθ̇1θ̇2 + Cθ̇22

)
=

1

2

(
A(Cp1 −Bp2)2 + 2B(Cp1 −Bp2)(−Bp1 +Ap2) + C(−Bp1 +Ap2)

2

(AC −B2)2

)
=

1

2

(
C(AC −B2)p21 − 2B(AC −B2)p1p2 +A(AC −B2)p22

(AC −B2)2

)
=

1

2

(
Cp21 − 2Bp1p2 +Ap22

AC −B2

)
.

Finally, the kinetic energy expressed using the canonical momenta is

T =
l22m2p

2
1 − 2l1l2m2 cos(θ1 − θ2)p1p2 + l21(m1 +m2)p

2
2

2l21l
2
2m2(m1 +m2 sin2(θ1 − θ2))

,

and the Hamiltonian for the double pendulum is

H(p,θ) =
l22m2p

2
1 − 2l1l2m2 cos(θ1 − θ2)p1p2 + l21(m1 +m2)p

2
2

2l21l
2
2m2(m1 +m2 sin2(θ1 − θ2))

− l1(m1 +m2)g cos θ1 − l2m2g cos θ2

. (14)

1.2.3 Equations of Motion

The equations of motion for the double pendulum are found by a direct application of the
Hamilton’s equations

θ̇ = ∇pH(p,θ) ṗ = −∇θH(p,θ) .

Calculating θ̇ is a straightforward affair and solving for ṗ, while also straightforward, is a
tedious excersise, the details of which are omitted.

θ̇1 =
∂H
∂p1

=
l22m2p1 − l1l2m2 cos(θ1 − θ2)p2
l21l

2
2m2(m1 +m2 sin2(θ1 − θ2))

(15)

θ̇2 =
∂H
∂p2

=
l21(m1 +m2)p2 − l1l2m2 cos(θ1 − θ2)p1)p2

l21l
2
2m2(m1 +m2 sin2(θ1 − θ2))

(16)

ṗ1 = −∂H
∂θ1

= −l1(m1 +m2)g sin θ1 − C1 + C2 (17)

ṗ2 = −∂H
∂θ2

= −l2m2g sin θ2 + C1 − C2 (18)

10



2 NUMERICAL METHODS

where

C1 =
sin(θ1 − θ2)p1p2

l1l2(m1 +m2 sin2(θ1 − θ2))

and

C2 =
l22m2p

2
1 − l1l2m2 cos(θ1 − θ2)p1p2 + l21(m1 +m2)p

2
2

2l21l
2
2(m1 +m2 sin2(θ1 − θ2))2

.

2 Numerical Methods

Many systems of ordinary differential equations are not completely integrable and can only
be solved numerically. Consider the general initial value problem

ẏ = f(t,y), t ≥ t0 y0 = y(t0) . (19)

The numerical methods described here compute an approximate solution yn evaluated over
a discrete set of times given by

tn+1 = tn + hn

where hn is the step size. Unless otherwise stated, we will assume that the step size is
constant and drop the subscript. The values of the numerical solution are denoted by yn
and are related to the exact solution by

yn = y(tn) + en

where en is the local approximation error. We say that a numerical method is of order p if
the local error of the solution it generates is on the order of hp+1, or stated equivelently,

yn = y(tn) +O(hp+1) .

2.1 Runge-Kutta Methods

The Runge-Kutta family of solvers occupies a central place in the field of numerical analysis.
These methods take the natural approach of solving equation (19) by integrating f(t,y)
over a single time step from tn to tn+1,

y(tn+1) =

∫ tn+1

tn

f(τ,y) dτ .

After translating by tn and scaling by h = tn+1 − tn this is equivalently written as

y(tn+1) = y(tn) + h

∫ 1

0
f(tn + hτ,y(tn + hτ)) dτ .

To make the move into the numerical domain, the next logical step is to replace the inte-
gration by a quadrature,

yn+1 = yn + h
s∑
j=0

bjf(tn + hcj ,y(tn + hcj))

11



2.2 Collocation Methods 2 NUMERICAL METHODS

where b1, b2, ..., bs are called weights and c1, c2, ..., cs are nodes statisfying 0 ≤ ci ≤ 1.
Despite giving a discrete solution, this formula is not applicable because y is unknown.
To overcome this hurdle y must be approximated s times; these approximate solutions
are denoted by kj , where j = 1, 2, ..., s. To start, we take advantage of the fact that yn
is assumed to be known and set c1 = 0 so that k1 = yn. For explicit methods, the ith

approximation is constructed as a linear combination of f(tn + hc1, k1), f(tn + hc2, k2), ...,
f(tn + hcj , kj) for j < i:

k1 = yn

k2 = yn + a21f(tn, k1)

k3 = yn + a31f(tn, k1) + a32f(tn + hc2, k2)

...

kν = yn +

s−1∑
i

aνif(tn + hci, ki)

yn+1 = yn +

s∑
j

bjf(tn + hcj , kj) .

Implicit Runge-Kutta methods generalize this structure by allowing each approximation ki
to be a linear combination over the set { f(t + hcj , kj) | j = 1, ..., s }. The general form of
an s-stage Runge-Kutta method is

k1 = f(tn + hc1, yn + h(a11k1 + a12k2 + · · ·+ a1sks))

k2 = f(tn + hc2, yn + h(a21k1 + a22k2 + · · ·+ a2sks))

...

ks = f(tn + hcs, yn + h(as1k1 + as2k2 + · · ·+ assks))

yn+1 = yn + h(b1k1 + b2k2 + · · ·+ bsks) .

This can be compactly represented by the Butcher table

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
...

...
. . .

...
cs as1 as2 · · · ass

b1 b2 · · · b4

2.2 Collocation Methods

Collocation methods are derived by choosing a set of nodes c1, c2, ..., cs within the unit
interval and finding the polynomial of degree s that statisies the differential equation at
each node as well as at the initial condition imposed by yn. That is, the goal is to find a
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polynomial u such that

u(tn) = yn

u̇(tn + hcj) = f(tn + hcj ,u(tn + hcj)) for j = 1, ..., s .

With such a polynomial in hand, we simply set yn+1 = u(tn+1). It can be shown that the
collocation method just described can be cast in the Runge-Kutta framework by

aij =

∫ ci

0

qj(τ)

qj(cj)
dτ, i, j = 1, 2, ..., s (20)

bj =

∫ 1

0

qj(τ)

qj(cj)
dτ, j = 1, 2, ..., s (21)

where

q(t) =

s∏
j=1

(t− cj) and qk(t) =
q(t)

t− ck
.

The Gauss-Legendre collocation methods are a specialization that will turn out to have a
particular useful property. Let {P1, P2, ..., Ps} be the set of polynomials that are orthogonal
with respect to the weight function ω(t) = 1 on the interval t ∈ [0, 1]. That is, they satisfy∫ 1

0
Pi(t)Pj(t) dt = 0 i, j = 1, ..., s i 6= j .

The s-stage Gauss-Legendre collocation method is constructed by choosing c1, c2, ..., cs to
be the zeros of Ps. The set {P1, P2, ..., Ps} can be generated by linearly transforming the
well known Legendre polynomials, which are orthogonal on the interval t ∈ [−1, 1]. Doing
so yields

Ps(t) =
(s!)2

(2s)!

s∑
k=0

(−1)s−k
(
s
k

)(
s+ k
k

)
tk . (22)

It can be shown that an s-stage Gauss-Legendre method has an order of 2s.

2.3 Sympletic Methods

Symplectic methods yield solutions to Hamiltonian systems that preserve their symplectic
structure. That is, the symplectic area defined in equation (4) remains constant for all time.
This is key to producing accurate, long-running simulations. The local approximation error
of the energy for solutions resulting from symplectic methods is limited to O(hp). There
exists no such guarantee for non-symplectic methods. Quite often symplectic methods
produce solutions in which the energy oscillates around the exact value, whereas the energy
of systems solved by non-symplectic techniques tends to increase or decrease as the system
evolves. The near constant energy, at least taken on the average, does not last forever,
but it will be maintained significantly longer than the energy of a solution which doesn’t
preserve the underlying geometric structure.
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We state two theorems that can be used to determine if a particular numerical method is
symplectic or not. The first of these gives a way to test whether a particular Runge-Kutta
method is symplectic. The second is a stronger statement concerning an entire class of
methods.

Theorem 2. Given a Runge-Kutta method with Butcher table,

c1 a11 · · · a1k
...

...
. . .

...
ck ak1 · · · akk

b1 · · · bk

Define the matrix M to be,

Mij = biaij + bjaji − bibj

Then, if M = 0 the Runge-Kutta method is symplectic.

Theorem 3. Gauss-Legendre collocation methods are symplectic

2.4 Specific Numerical Methods

2.4.1 Implicit Midpoint Rule

The implicit midpoint rule is the Gauss-Legendre collocation method corresponding to
s = 1. As such, it is a second order symplectic method and, as its name implies, is implcit.
According to equation (22),

P1(t) = t− 1

2
,

the zero of which is c1 = 1/2. Using equations (20) and (21),

a11 =

∫ 1/2

0
dτ =

1

2

b1 =

∫ 1

0
dτ = 1 .

Therefore the implicit midpoint rule is given by the butcher table

1/2 1/2

1

and the recursive formula,

yn+1 = yn + hf

(
tn +

h

2
,

1

2
(yn + yn+1)

)
. (23)
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2.4.2 Yoshida’s Method

Various techniques have been developed to construct higher order solvers from lower order
solvers. Composing multiple methods is one such approach. Yoshida’s method is a fourth
order implcit method constructed by composing three instances of the implicit midpoint
method. First equation (23) is applied with a step size of αh, where α > 1. That is followed
by a backward step of size of (2α− 1)h, and then a forward step of size αh. The sequence
of temporal jumps finally lands on tn+1. If α is chosen to be 1/(2 − 3

√
2) it can be shown

that the method is symplectic. The algorithm is given by

u1 = yn + αhf

(
tn +

αh

2
,
yn + u1

2

)
u2 = yn − (2α− 1)hf

(
tn −

(α− 1)h

2
,
u1 + u2

2

)
yn+1 = yn + αhf

(
tn +

h

2
,
u2 + yn+1

2

)
.

2.4.3 Forward Euler

Forward Euler is the perhaps the simplest approach that can be taken to numerically solve
a differential equation. It is a first order explicit method whose Butcher table and recursive
formula are

1 0

1

yj+1 = yj + hjf(tj ,yj) .

Theorem 2 can be used to test whether or not this method is symplectic. In this case the
matrix M consists of a single entry,

M11 = b1a11 + b1a11 − b1b1 = (1)(0) + (1)(0)− (1)(1) = −1 .

Therefore, M 6= 0 and forward Euler is not symplectic.

2.4.4 Classic Runge-Kutta

The classic fourth order Runge-Kutta method, refered to simply as the Runge-Kutta method,
was developed by Runge and Kutta in 1900. It is an explicit scheme given by the following
butcher table,

0
1/2 1/2
1/2 0 1/2
0 0 0 1

1/6 1/3 1/3 1/6
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The solution is computed by the formula,

k1 = f (tn, yn)

k2 = f

(
tn +

h

2
, yn +

h

2
k1

)
k3 = f

(
tn +

h

2
, yn +

h

2
k2

)
k4 = f (tn + h, yn + hk3)

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4) .

Again, symplecticity is determined according to Theorem 2 by constructing the matrix M ,

M =
1

6


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

+
1

6


0 1/2 0 0
0 0 1 0
0 0 0 2
0 0 0 0

− 1

36


1 2 2 1
2 4 4 2
2 4 4 1
1 2 2 1



M =
1

36


−1 1 −2 −1
4 −4 2 −2
−2 2 −4 11
−1 −2 4 −1

 .
And, just like forward Euler, M 6= 0 which implies that the classic Runge-Kutta method
is not symplectic.

2.5 Error Analysis

In the absence of an analytical solution, direct calculation of the numerical error can not
be acheived, and alternative methods of evaluating the quality of the approximation must
be employed. The Hamiltonian can be evaluated exactly, and according to proposition 1
ought to remain constant for all time. As such, the difference between the energy computed
at some arbitrary time t > t0 and the energy evaluated at t = t0 provides some measure of
how well a numerical method solves a Hamiltonian system. Since fixing the energy reduces
the number of free parameters in the equations of motion by one, the solution is restricted
to a (2d − 1)-dimensional subset of phase space. In the case of the double pendulum, the
trajectories lie on a three-dimensional manifold in phase space. With this in mind, the
error in energy can be interpreted as a measure of how close numerical solutions stay to the
manifold containing the exact solution. This implies that solutions with small deviations in
energy may still exhibit large error.

A second approach is to approximate the error of a numerical solution by comparing it
with a second numerical solution obtained using a higher order method. This strategy will
not provide an exact measure of error, but it does offer a estimate bounded by the following
proposition.
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Proposition 2. Let ẏ = f(t,y) and y0 be an initial value problem. If y(t) is the exact
solution, yn is an approximate solution of order p, and ỹn is an approximate solution of
order p + k, where k ≥ 1. Then ‖ỹn − yn‖ is an approximation of the local error of yn.
Moreover, the approximate error is of order p+ k,

‖y(tn)− yn‖ = ‖ỹn − yn‖+O(hp+k+1) .

Proof. Let en and ẽn be the errors associated with the two approximate solutions such that,

ỹn = y(tn)− ẽn
yn = y(tn)− en .

Subtracting these two equations yields

en = ỹn − yn + ẽn,

from which the result is readily obtained,

‖en‖ = ‖ỹn − yn + ẽn‖ ≤ ‖ỹn − yn‖+ ‖ẽn‖ = ‖ỹn − yn‖+O(hp+k+1) .

2.6 Poincare Map

The Poincare map transforms a 2d-dimensional solution to a continuous time dynamical
system into a (2d − 1)-dimensional discrete dynamical system that can be used to study
the properties of the continuous solution. It is constructed by considering the sequence of
points at which the 2d-dimensional orbits cross some arbitrary 2d− 1-dimensional oriented
surface called the Poincare section. The orientation of the Poincare section divides phase
space into two disjoint sets, let us call them the front and back sides of the surface. Only
crossings that occur as the trajectory passes from the front to the back are included in the
sequence. A formal definition is given below and a cartoon of the construction is shown in
Figure 3.

Definition 4. Given a solution y to the differential equation ẏ = f(t,y) choose some
arbitrary (2d− 1)-dimensional oriented surface in phase space to be the Poincare section S.
Consider the sequence of times {tk} such that

1. ti < tj for all i < j

2. y(ti) ∈ S

3. y(t−i ) is on the front side of S

The Poincare map P is defined to be

P (y) = {ρk} = {y(tk)}

The Poincare map encodes qualitative information about the solution y. If y is periodic
the sequence of points {ρk} are also periodic. Consequently, the set of all points within that
sequence is finite. Quasi-periodic motion is captured as a curve filling sequence whereas a
chaotic trajectory produces an area filling sequence.
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y(t)

y0

S

ρ1

ρ2

ρ3
ρ4

Figure 3: Construction of the Poincare map

3 Results

Our analysis is comprised of three parts. First, we simulated the motion of the double
pendulum using two different initial conditions to compare the regular motion from chaotic
motion. Secondly, we undertook an error analysis that compared the accuracy of the four
methods identified above. Finally, the relationship between energy and the type of motion
exhibited by the double pendulum was investigated through the use of Poincare sections.
All of the experiments were conducted with the following parameters.

m1 = 1, m2 = 3, l1 = 1, l2 = 2, g = 1

3.1 Double Pendulum Simulation

It is well known that the double pendulum exhibits chaotic behavior, but this does not
mean that the dynamics are chaotic for every initial condition. To qualitativly investigate
the differences between regular and chaotic motion, the equations governing the double
pendulum (equations (15) to (18)) were solved using the Yoshida method with h = 0.01
for 0 ≤ t ≤ 240 seconds. This was done using two different initial conditions which varied
only in θ1; all other coordinates were started at zero. The first is y0 = (0.8, 0, 0, 0), which
results in quasiperiodic motion. The second solution is initially y0 = (3, 0, 0, 0) and exhibits
chaotic motion.

The time evolution of each simulation is plotted as a sequence of snap shots in Figure 4
and Figure 10. The blue curves show the path traced out by the second mass as the system
evolved.
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A second set of visualizations, presented in Figure 5 for the regular case and Figure
11 for the chaotic case, projects the phase space trajectory onto four axis-planes. Starting
with the upper left plot and moving clockwise, the solution is projected onto the (θ1, p1)-
plane, the (θ2, p2)-plane, the (p1, p2)-plane, and the (θ1, θ2)-plane. Regarding the regular
behavior shown in Figure (5, it is interesting to note that the projections onto the congujate
pair planes have a roughly circular appearance, while the projections onto the position and
momenta planes in the bottom row show a somewhat rectangular envelope. The reason for
this difference is made a bit more clear by Figures 6 to 9 and Figures 12 to 15 which contain
pictures of phase space projected onto several three-dimensional subspaces. Each figure
shows four views of the trajectory projected onto a three-dimensional subspace, plotted in
blue, as well as the projections onto each of the axis planes, displayed in green, red, and
cyan.

3.2 Error Analysis

An analysis of the quality of the numerical solutions obtained using the Yoshida method,
the implicit midpoint method, the forward Euler method, and the classic Runge-Kutta
method was taken up next. The equations of motion (15) to (18) were solved by all four
methods using a step size of h = 0.01 and over a period of T = 4200 seconds. This was
done, exactly like the previous experiment, over the set initial conditions y0 = (0.8, 0, 0, 0)
and y0 = (3, 0, 0, 0).

The first measure that was considered was the deviation of the energy over the course
of the simulation. The actual error in the energy along with a trend line is plotted over the
entire 4200 seconds in Figures 17 and 19. The first 240 seconds are shown in Figures 16 and
18. When viewing these graphs it is important to take note of the scale on the ∆H axis. At
first glance the results for Yoshida’s method and the implicit midpoint method look similar,
but a careful reading shows that the two actually differ by four orders of magnitude. It
should be noted the experiments in previous section correspond exactly with the results for
the Yoshida’s method in Figures 16 and 18, thereby offering one more point of comparison
for the simulations run in the previous section.

Not suprisingly, Figure 16 shows that the solution using Euler’s method grows linearly
over the first 240 seconds. Nonetheless, in both the quasiperiodic and chaotic cases this
does not continue but, loosely speaking, turns into a spiking pattern riding on top of a
nearly constant trend. Both of the symplectic methods show a characteristic oscillating
behavior. Still though, the trend lines for the regular motion are both slightly offset above
zero. Also performing as expected, the Runge-Kutta solution shows nearly linear loss of
energy as time progresses. Comparison of Figure 16 and Figure 18 show that the maximum
∆H using Yoshida’s method increased by four orders of magnitude between the regular and
chaotic cases. Similar differences are seen with respect to the implicit midpoint method,
Euler’s method, and the Runge-Kutta method. It is not clear whether these differences are
due the chaotic motion or if they are simply a result of starting the system with a larger
initial energy.

The time evolution of the system solved by each of the four methods is shown in Figures
24, 25, 26, and 27. The first 240 seconds and the entire 4200 seconds of the quasiperiodic
case are shown Figures 24 and 25. Similarly, the first 90 seconds and 240 seconds of chaotic
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motion are shown in Figures 26 and 27. Each frame shows four pendula colored blue, green,
red, and orange which correspond to Yoshida’s method, the implicit midpoint method,
Euler’s method, and the Runge-Kutta method, respectively. The curves show the path
traced by the second mass for the six seconds leading up to the snap shot. Because each
pendulum was started with the same initial condition, the pendula are stacked on top of
each other in the first frame. As time progresses the solutions deviate and the pendula
separate. All of these figures show that the solution using Euler’s method significantly
deviates from the other three almost immediatley. On the other hand, those three solutions
stay consistent for the enirity of the quasiperiodic case. The chaotic solutions show that
good agreement until around 50 seconds when the implicit midpoint pendulum becomes
visible. By the 80 second mark none of the solutions are in agreement.

Lastly, we calculated the approximate error of the solution produced by the implicit
midpoint method and the solution given by Euler’s method. According to the prescription
in proposition 2, the L∞ distance between each of these solutions and the exact solution
is approximately equal to difference between each solution and the solution resulting from
Yoshida’s method.

eimpmid ≈ ‖yyoshida − yimpmid‖∞
eeuler ≈ ‖yyoshida − yeuler‖∞

The results are shown in Figures 20, 21, 22, and 23. In addition, we also plotted the
difference between the solutions from the two fourth order methods. It appears that the
numerical results obtained for the regular behavior are consistent with the theory outlined in
the methods section. The error between the chaotic solutions was not so well behaved. This
is a consequence of the sensitivity of chaotic systems to differences in initial conditions. Even
the smallest of errors incurred due to finite machine precision will be magnified exponentially
until the numerical solution significantly deviates from the exact solution.

3.3 Poincare Maps

We know from the previous experiments that there is some correspondance between energy
and the qualitative nature of the solution. To further investigate this phenomenon we con-
structed Poincare maps at the four different energy levels in the set E = {−8.5,−7.1,−6.9,−6.5}.
The smallest of these is marginally larger than the minimum energy of −9 found by evalu-
ating H at y = (0, 0, 0, 0). The chosen Poincare section is the hyperplane corresponding to
the condition that θ1 = 0 and oriented so that only points where p1 > 0 are kept. For each
fixed energy e ∈ E, a set of initial conditions Ω ∈ R2d was calculated such that H(y0) = e,
for each y0 ∈ Ω. Then, the Poincare map was computed for each y0 ∈ Ω and plotted using
a color corresponding to the potential energy of y0. The resulting plots are presented in
Figures 28 to 31. The lowest energy plot contains only line filling sequences which indicates
that all the initial conditions chosen whose energy is −8.5 result in quasiperiodic motion.
As the energy increases these curves deform and some of them bifurcate into an area filling
set, indicating that those initial conditions lead to chaotic motion.
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(a) t = 0 (b) t = 21.77 (c) t = 43.61

(d) t = 65.45 (e) t = 87.22 (f) t = 109.06

(g) t = 130.9 (h) t = 152.74 (i) t = 174.51

(j) t = 196.35 (k) t = 218.19 (l) t = 240

Figure 4: Quasiperiodic Motion - Time Evolution (T = 240 seconds)
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(a) θ1 vs p1 (b) θ2 vs p2

(c) θ1 vs θ2 (d) p1 vs p2

Figure 5: Quasiperiodic Motion - Phase Space (y0 = (0.8, 0, 0, 0), T = 240 seconds)
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Figure 6: Quasiperiodic Motion - (θ1, θ2, p1) Phase Space (y0 = (0.8, 0, 0, 0), T = 240
seconds)
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Figure 7: Quasiperiodic Motion - (θ1, θ2, p2) Phase Space (y0 = (0.8, 0, 0, 0), T = 240
seconds)
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Figure 8: Quasiperiodic Motion - (θ1, p1, p2) Phase Space (y0 = (0.8, 0, 0, 0), T = 240
seconds)
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Figure 9: Quasiperiodic Motion - (θ2, p1, p2) Phase Space (y0 = (0.8, 0, 0, 0), T = 240
seconds)
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(a) t = 0 (b) t = 21.77 (c) t = 43.61

(d) t = 65.45 (e) t = 87.22 (f) t = 109.06

(g) t = 130.9 (h) t = 152.74 (i) t = 174.51

(j) t = 196.35 (k) t = 218.19 (l) t = 240

Figure 10: Chaotic Motion - Time Evolution
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(a) θ1 vs p1 (b) θ2 vs p2

(c) θ1 vs θ2 (d) p1 vs p2

Figure 11: Chaotic Motion - Phase Space (y0 = (3, 0, 0, 0), T = 240 seconds)
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Figure 12: Chaotic Motion - (θ1, θ2, p1) Phase Space (y0 = (3, 0, 0, 0), T = 240 seconds)
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Figure 13: Chaotic Motion - (θ1, θ2, p2) Phase Space (y0 = (3, 0, 0, 0), T = 240 seconds)
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Figure 14: Chaotic Motion - (θ1, p1, p2) Phase Space (y0 = (3, 0, 0, 0), T = 240 seconds)
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Figure 15: Chaotic Motion - (θ2, p1, p2) Phase Space (y0 = (3, 0, 0, 0), T = 240 seconds)
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(a) Yoshida

(b) Implicit Midpoint

(c) Forward Euler

(d) Classic Runge-Kutta

Figure 16: Quasiperiodic Motion - Energy error (T = 240 seconds)
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(a) Yoshida

(b) Implicit Midpoint

(c) Forward Euler

(d) Classic Runge-Kutta

Figure 17: Quasiperiodic Motion - Energy error (T = 4200 seconds)
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(a) Yoshida

(b) Implicit Midpoint

(c) Forward Euler

(d) Classic Runge-Kutta

Figure 18: Chaotic Motion - Energy error (T = 240 seconds)
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(a) Yoshida

(b) Implicit Midpoint

(c) Forward Euler

(d) Classic Runge-Kutta

Figure 19: Chaotic Motion - Energy error (T = 4200 seconds)
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(a) Implicit Midpoint

(b) Forward Euler

(c) Classic Runge-Kutta

Figure 20: Quasiperiodic Motion - Approximate error ‖e‖∞ (T = 240 seconds)
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(a) Implicit Midpoint

(b) Forward Euler

(c) Classic Runge-Kutta

Figure 21: Quasiperiodic Motion - Approximate error ‖e‖∞ (T = 4200 seconds)
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(a) Implicit Midpoint

(b) Forward Euler

(c) Classic Runge-Kutta

Figure 22: Chaotic Motion - Approximate error ‖e‖∞ (T = 240 seconds)
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(a) Implicit Midpoint

(b) Forward Euler

(c) Classic Runge-Kutta

Figure 23: Chaotic Motion - Approximate error ‖e‖∞ (T = 4200 seconds)
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(a) t = 0 (b) t = 21.7 (c) t = 43.6

(d) t = 65.42 (e) t = 87.24 (f) t = 109

(g) t = 130.87 (h) t = 152.69 (i) t = 174.51

(j) t = 196.33 (k) t = 218.16 (l) t = 240

Figure 24: Quasiperiodic Motion - Comparison of numerical methods (T = 240 seconds)
(Yoshida, Implicit Midpoint, Forward Euler, Classic Runge-Kutta)
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(a) t = 0 (b) t = 381.7 (c) t = 763.6

(d) t = 1145.42 (e) t = 1527.24 (f) t = 1909

(g) t = 2290.87 (h) t = 2672.69 (i) t = 3054.51

(j) t = 3436.34 (k) t = 3818.16 (l) t = 4200

Figure 25: Quasiperiodic Motion - Comparison of numerical methods (T = 4200 seconds)
(Yoshida, Implicit Midpoint, Forward Euler, Classic Runge-Kutta)
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(a) t = 0 (b) t = 8.15 (c) t = 16.33

(d) t = 24.51 (e) t = 32.69 (f) t = 40.87

(g) t = 49.06 (h) t = 57.24 (i) t = 65.42

(j) t = 73.60 (k) t = 81.78 (l) t = 90

Figure 26: Chaotic Motion - Comparison of numerical methods (T = 90 seconds) (Yoshida,
Implicit Midpoint, Forward Euler, Classic Runge-Kutta)
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(a) t = 0 (b) t = 21.7 (c) t = 43.6

(d) t = 65.42 (e) t = 87.24 (f) t = 109

(g) t = 130.87 (h) t = 152.69 (i) t = 174.51

(j) t = 196.33 (k) t = 218.16 (l) t = 240

Figure 27: Chaotic Motion - Comparison of numerical methods (T = 240 seconds) (Yoshida,
Implicit Midpoint, Forward Euler, Classic Runge-Kutta)
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Figure 28: Poincare Map (H= -8.5)
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Figure 29: Poincare Map (H= -7.1)
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Figure 30: Poincare Map (H= -6.9)
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Figure 31: Poincare Map (H= -6.5)
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