
 

 

 

 

 

 

 

FRICTION LOSS ALONG A PIPE 
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1. INTRODUCTION 

The frictional resistance to which fluid is subjected as it flows along a pipe results 

in a continuous loss of energy or total head of the fluid. Fig 1 illustrates this in a 

simple case; the difference in levels between piezometers A and B represents the 

total head loss h in the length of pipe l. In hydraulic engineering it is customary to 

refer to the rate of loss of total head along the pipe, dh/dl, by the term hydraulic 

gradient, denoted by the symbol i, so that  

 
𝑑ℎ

𝑑𝑙
= 𝑖  

 

 

 

Fig 1 Diagram illustrating the hydraulic gradient 

 

Osborne Reynolds, in 1883, recorded a number of experiments to determine the 

laws of resistance in pipes. By introducing a filament of dye into the flow of water 

along a glass pipe he showed the existence of two different types of motion. At 

low velocities the filament appeared as a straight line which passed down the 

whole length of the tube, indicating laminar flow. At higher velocities, the 

filament, after passing a little way along the tube, suddenly mixed with the 

surrounding water, indicating that the motion had now become turbulent.  
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Experiments with pipes of different and with water at different temperatures led 

Reynolds to conclude that the parameter which determines whether the flow 

shall be laminar or turbulent in any particular case is  

𝑅 =
𝜌𝑣𝐷

𝜇
 

In which  

R denotes the Reynolds Number of the motion  

𝜌 denotes the density of the fluid  

v denotes the velocity of flow  

D denotes the diameter of the pipe  

𝜇 denotes the coefficient of viscosity of the fluid.  

 

The motion is laminar or turbulent according as the value to R is less than or 

greater than a critical value. If experiments are made with increasing rates of 

flow, this value of R depends degree of care which is taken to eliminate 

disturbances in the supply and along the pipe. On the hand, if experiments are 

made with decreasing flow, transition from turbulent to laminar place at a value 

of R which is very much less dependent on initial disturbances. This value of P. 

about 2000, and below this, the flow becomes laminar sufficiently downstream of 

any disturbance. matter how severe it is.  

 

Different laws of resistance apply to laminar and to turbulent flow. For a given 

fluid flowing along a given pipe, experiments show that  

for laminar motion   I 𝛼  V                        and                                  …..3 

for turbulent motion   I  𝛼  𝑉𝑛                                                         ……4 

 

n being an index which lies between 1.7 and 2.0 (depending on the value of R and 

on the roughness of the wail of the pipe) Equation 3 is in accordance with 

Poiseuille's equation which can be written in the form  

i=
32𝜇𝑣

𝜌𝑔𝐷2
                                                                                               ……5 
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There is no similar simple result for turbulent now; in engineering practice it is 

custom Darcy's Equation  

 

𝑖 =
4𝑓𝑣2

𝐷2𝑔
                                                        ……6  

 

in which f denotes an experimentally determined friction factor which varies with 

R and pipe roughness.  

 

The object of the present experiment is to demonstrate the change in the law of 

resistance and to establish the critical value of R. Measurements of i in the 

laminar region may be used to find the co-efficient of viscosity from equation 5 

and measurements in the turbulent region may be used to find the friction factor 

f from equation 6.  

 

2. DESCRIPTION OF APPARATUS   

 

2. 1 . Overview  

Fig 2 shows the arrangement in which water from a supply tank is led through a 

flexible hose to the bell-mouthed entrance to a straight tube along which the 

frictional loss is measured Piezometer tappings are made at an upstream section 

which lies approximately 45 tube diameters away from the pipe entrance, and at 

a downstream section which lies approximately 40 tube diameters away from the 

pipe exit. These clear lengths upstream and downstream of the test section are 

required to prevent the results from being affected by disturbances near the 

entrance and exit of the pipe. The piezometer tappings are connected to an 

inverted U-tube manometer, which reads the differential pressure directly in mm 

of water, or a U-tube which reads in mm of mercury. 
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The rate of flow along the pipe is controlled by a needle valve at the pipe exit, and 

is measured by timing the collection of water in a measuring cylinder (the 

discharge being so small as to make the use of the H1 Hydraulic Bench weighing 

tank impracticable) 

  

 

Fig 2 Diagrammatic Arrangement of Apparatus for Measuring Friction Loss Along a 

Pipe  

2.2 Installation and Preparation  

The apparatus is normally dispatched assembled and ready for use. In some 

instances, however, the manometer panel will be dismantled from the base-

board of the apparatus. To reassemble:-  

a) Secure the back panel supports to the baseplate with the two screws and 

washers provided.  

These screws should not be excessively tightened. 

b) Connect the free ends of the water and mercury manometer tubes to the 

pressure tapping block on the base board.  

Secure these tubes with plastic ty-wrap clips using pliers to tighten them.  

Superfluous lengths of ty-wrap should be cut off. 
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c) Assemble and connect the Header Tank, H7a, to the Hydraulic Bench supply 

and the inlet the 'friction in pipe' apparatus,  

For higher flow rates, connect the plastic supply hose from the HI Hydraulic Bench 

directly to the inlet of the apparatus. Secure with the hose clip provided.  

 

d) Connect the smaller bore plastic tube to the outlet port of the needle valve. 

Until measurements of flow are required, direct the free end of this tube into the 

access hole in the centre of the bench top.  

For measurement direct the tube into a measuring flask. A litre flask ( not 

supplied), sub-divided into 10 millilitre divisions, is most suitable.  

 

e) Fill the U-tube manometer up to the 270 millimetres mark with mercury (not 

supplied). Approximately 40 millilitres will be required for this. Access ports are 

provided in the lower appropriate header.  

 

f) Before allowing water to flow through the apparatus, check that the respective 

air purge valve and screw caps on the water and mercury manometer are both 

tightly closed.  

 

CHECKING WATER MANOMETER CIRCUIT  

 A tap is provided at the downstream end of the test pipe for selecting either a 

water or mercury manometer circuit. 

 Avoid syphoning of the water when using the mercury manometer. 

 To check the circuit:- 

a) Direct the tap towards the open position. 

 b) Allow a nominal flow of water through the apparatus. 

 Lightly tap the manometer tubes to clear air from the circuit.  

c) Adjust the water levels in the tubes to the same height. 
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It may be necessary to connect a bicycle pump to the purge valve in the manifold 

and manipulate the levels accordingly. 

 

d) Increase the water flow to obtain an approximate maximum scale reading. 

Observe these levels to ensure that they remain steady. 

 

 If there is a steady rise in the manometer levels, check that the valve is tightened 

and sealed properly.  

If tightening does not stop the leak, replace the valve seal.  

Check that the tube ferrules in the manifold are free from water blockage as this 

will suppress water levels and cause erroneous results. If this is suspected, a sharp 

burst of pressure from the bicycle pump will normally clean the blockage.  

 

PURGING MERCURY MANOMETER  

 

a) Turn the isolating tap to the Mercury Manometer circuit.  

 

b) Purge all air from the manometer tubes by releasing the screw caps in the 

mercury manifold.  

 

c) When purged, firmly screw down the manifold caps.  

 

2.3 Routine Care and Maintenance  

After use, the apparatus should be drained as far as possible and all external 

surfaces dried with a lint-free cloth.  

 

Dry the Header Tank if this has been used. Care must be taken not to bend or 

damage the needle valve tip if this is removed. If the plastic manometer tubes 

become excessively discoloured a stain and deposit remover should be use. 
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THEORY OF FRICTION LOSS ALONG A PIPE  

3.1 Derivation of Poiseuille's Equation  

Fig 3 Derivation of Poiseuille's Equation 

 To derive Poiseuille's equation which applied to laminar flow along a tube, 

consider the motion indicated on Fig 3. Over each cross-section of the tube, the 

piezometric pressure is constant, and this pressure falls continuously along the 

tube. Suppose that between cross-sections A and B separated by length l of tube, 

the fall in pressure is p. Then the force exerted by this pressure difference on the 

ends of a cylinder having radius r, and its axis on the centre line of the tube, is 

𝑝𝜋𝑟2. Over any cross-section of the tube, the velocity varies with radius, having a 

maximum value of vo the centre and falling to zero at the wall; let the velocity at 

radius r in any cross-section by denoted by vr. Then the shear stress 𝜏, in the 

direction shown on fig 3, due to viscous action on the curved surface of the 

cylinder, is given by  

𝜏 =
𝜇𝑑𝑣𝑟

𝑑𝑟
 

 (Note that 
𝑑𝑣𝑟

𝑑𝑟
, is negative so that the stress acts in the direction shown in the 

figure). The force on the cylinder is due to this stress 
𝜇𝑑𝑣𝑟

𝑑𝑟
. 2𝜋𝑟𝑙.  Since the fluid is 

in steady motion under the action of the sum of pressure and viscous forces, 
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𝑃. 𝜋𝑟2 +
𝜇𝑑𝑣𝑟

𝑑𝑟
2𝜋𝑟𝑙 = 0 

Therefore
𝑑𝑣𝑟

𝑑𝑟
=

−𝑝𝑟

2𝑙𝜇 
                         … … 8 

 

Integrating this and inserting a constant of integration such that  

𝑣𝑟 = 0    when r = a 

𝑉𝑟 =
𝑝

4𝑙𝜇
(𝑎2 − 𝑟2)                                   ……9 

 

This result shows that the velocity distribution across a section is parabolic, as 

indicated on fig 3, and that the velocity on the centre line, given by putting r = 0 in 

equation 9 is 

𝑣𝑜 =
𝑝𝑎

4𝑙𝜇
                                                    …….10 

 

The discharge rate Q may now be calculated. The flow rate through an annulus of 

radius r and width r is 

𝛿𝑄 =  𝑉𝑟 . 2𝜋𝑟𝛿𝑟 

 

Inserting 𝑉𝑟 from equation 9 and integrating 

𝑄 =
𝑝

4𝑙𝜇
2𝜋 ∫ (𝑎2𝑟 − 𝑟3)𝑑𝑟

𝑎

0

 

Therefore 𝑄 =
𝑝𝜋𝑎4

8𝑙𝜇
                               ……..11 

 

Now the mean velocity V over the cross section is, by definition, given by 

𝑄 = 𝑣. 𝜋𝑎2 

 

And elimimating Q between equation 11 and 12 gives 

𝑉 =
𝑝𝑎2

8𝑙𝜇
=

𝑝𝐷2

32𝑙𝜇
                                       ………13 
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By use of the substitution 

𝜌𝑔ℎ = 𝑝 

         And 
ℎ

𝑙
= 𝑖 

Eq. 13 may be written in the form 

𝑖 =
32𝜇𝑉

𝜌𝑔𝐷2
                                       …………..5 

(which is an equation of the form : y=mx+b) 

3.2 Derivation of Darcy's Equation  

If the flow is turbulent, the analysis given above is invalidated by the continuous 

mixing process which takes place. Across the curved surface of the cylinder having 

radius r in Fig 3, this mixing is manifest as a continuous unsteady and random flow 

into and out of the cylinder, so that the apparent shear stress on this surface is 

greater than the value given in equation 7. Because of the mixing, the distribution 

of velocity over a cross-section is more uniform than the parabolic shape deduced 

for laminar flow, as indicated on Fig 4.  

 

Although it is not possible to perform a complete analysis for turbulent flow, a 

useful result may be obtained by considering the whole cross-section as shown in 

Fig 4. It is reasonable to suppose that the shear stress 𝜏𝑜on the wall of the tube 

will depend on the mean velocity v; let us assume for the present that 
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𝜏0 = 𝑓.
1

2𝜌𝑣2
 

In which 
1

2𝜌𝑣2
 denotes the dynamic pressure corresponding to the mean velocity v 

and f is a friction factor (not necessarily constant). Since𝜏𝑜 and 1/2𝜌𝑣2 each have 

dimensions of force per unit area, f is dimensionless. The force on a cylinder of 

length l due to this stress id f.1/2p𝑣2.2𝜋al, and the force due to the fall in 

pressure is p. 𝜋𝑎2 , so that 

                                   p. 𝜋𝑎2 = f. 1/2p𝑣2.2𝜋al 

Substituting 

𝜌𝑔ℎ = 𝑝 

h/l  =  i 

and a=
𝐷

2
 

 

leads to the result 

i=
4𝑓

𝐷
.

𝑣2

2𝑔
 

 

which is form of Darcy’s equation 

The friction factor f which occurs in this equation was defined by equation 14 and 

is not necessarily constant. The results of many experiments show that f does, in 

fact, depend on both R, the Reynolds Number, and on the roughness of the pipe 

wall. At a given value of R, f increases with increasing surface roughness. For a 

given surface roughness, f generally decreases slowly with increasing R. This 

means that if R is increased by increasing v, so that the product fv2 on which i 

depends equation 6 will increase somewhat less than v2. In fact, over a fairly wide 

range, it is often possible, to represent the variation of i with v by the 

approximation  

 

i = kvn  

 

where k and n are constants for a given fluid flowing along a given pipe, n having 

a value between 1.7 and 2.0. 
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4 EXPERIMENTAL PROCEDURE 

 

 4.1 Overview 

 

 The apparatus is set on the bench and leveled so that the manometers stand 

vertically. The water manometer is then introduced into the circuit by directing 

the lever on the tap towards the relevant connecting pipe. The bench supply valve 

is opened and adjusted until there is a steady flow down the supply tank overflow 

pipe. With the needle valve partly open to allow water to flow through the 

system, any trapped air is removed by manipulation of the flexible pipes. 

Particular care should be taken to clear the piezometer connections of air. The 

needle valve is then closed whereupon the levels in the two limbs of the inverted 

U-tube should settle to the same value. If they do not, check that flow has been 

stopped absolutely, and that all air bubbles have been cleared from the 

piezometer connections. The height of the water level in the manometer may be 

raised to a suitable value by allowing air to escape through the air valve at the 

top, or by pumping air through the valve.  

 

Because of the large range of head differences involved, the readings are taken in 

two sets. Those for lower velocity flow rates, with the water manometer, and 

those for high velocity with the mercury manometer.  

 

4.2 Water Manometer Readings  

 

The needle valve is opened fully to obtain a differential head of at least 400 mm, 

and the collection of a suitable quantity of water in the measuring cylinder times. 

The values of h1, (head in downstream manometer) and h2 (head in upstream 

manometer) are now taken. Further readings may be taken at decreasing flows, 

the needle valve serving to reduce the discharge from each reading to the next. 

During this operation care should be taken: a) to ensure that the flow pipe exit is 

never below the surface of the water in the measuring cylinder; and b) to stand 

the measuring cylinder below the apparatus. Failure to observe these conditions 

will result in inaccurate flow rate readings, especially at the lower flow rates. The 

water temperature should be measured as accurately as possible at frequent 

intervals.  
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These readings should comfortably cover the whole of the laminar region and the 

transit turbulent flow; it is advisable to plot a graph of differential head against 

discharge as the experiment proceeds to ensure that sufficient readings have 

been taken to establish the slope of the straight line in the laminar region.  

 

4.3 Mercury Manometer Readings.  

 

The mercury manometer is now used, and the supply to the apparatus is taken 

directly from the bench supply valve instead of the elevated supply tank. Since 

the flexible hose between the bench supply valve and the apparatus will be 

subjected to the full pump pressure, it is advisable to secure the joints with hose  

clips.  

 

Isolate the water manometer by turning the tap shown in Fig 2.  

 

With the needle valve partially open and the pump running, the bench supply 

valve is opened fully. Air which may be trapped in the flexible hose is removed by 

manipulation, and bubbles in the piezometer connections arc induced to rise to 

the top of the U-tube, where they are expelled through bleed valves. There 

should then be continuous water connections from the piezometer tappings to 

the two surfaces of mercury in the U-tube and, when the needle valve is closed, 

the two surfaces should settle at the same level.  

 

Readings of h1 and h2 are now taken starting with a maximum discharge and 

reducing in steps, the needle valve being used to set the desired flows. The water 

temperature should be recorded at frequent intervals.  

 

It is desirable to take one or two readings at the lower end of the range which 

overlap the range already covered by the water manometer. Since a reading of 20 

mm on the mercury U-tube corresponds to 252 mm on the water manometer, 

this requires one or two readings in the region 20 mm.  

 

The diameter of the tube and the length between the piezometer tappings should 

be noted. 
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4.4  Procedures 
Step 1: Record at least 8 sets of data over the range of the water manometer (see 
Section 4.2) and another 8 or more over the range of the mercury manometer 
(see Section 4.3). Tables 1 and 2 show the format of suitable result tables.  
Results given in this section are typical of those obtainable from the equipment 
supplied. There will, however, be slight differences between individual units.  
Step 2: Plot graphs of hydraulic gradient i against mean velocity v, and log i 
against log v. (Figs 6 and 7 show the form of graphs expected). (Reminder - the 
two manometers generate data for different operating ranges of the same 
system. The student must combine the data sets to analyze the system over the 
entire range.)  
Step 3: From the (best fit) graph of i against log v, or graph of i vs v, determine the 
velocity at which rapid transition occurs. Determine the critical Reynold's Number 
at this velocity. (The student may elect to "blow up" that portion of the graph 
between 0.3 and 1.2 m/s)  
Step 4: From the (best fit) slope of the graphs, derive the relationship between v 
and i. For both the upper and lower ranges, determine k and n where i = kvn 
Step 5: From the gradient of i against v in the laminar range, determine the 
coefficient of viscosity and compare with theoretical values.  
Step 6: In the turbulent region of flow, select 4 or 5 values of velocity. Compute 
friction factors and Reynold's Number at these velocity values. Plot friction factors 
against Reynold's Number (Moody's Diagram) Compare with theoretical values.  
 
5. TYPICAL RESULTS AND SAMPLE CALCULATIONS 
5.1 Relationships between I and u 
Length of pipe between piezometer tappings, l    ………..524 mm 
Nominal diameter of pipe, D                                  ………..3 mm 
Cross-sectional area of pipe, A                               ………..7.06 mm2     
Derivation of i over gauge length l 
 i) For water manometer 

𝑖 =
(ℎ1−ℎ2)

𝑙
  

 ii) For mercury manometer 
 Referring to Fig 5, the specific gravity of mercury is taken as 13.6 writing the head 
difference in terms of water 

𝑖 =
(ℎ1 − ℎ2)(13.6 − 1)

𝑙
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Qty 
(ml) 

t 
(s) 

v 
(m/s) 

h1 

(mm) 
h2 

(mm) 
h1-h2 
(m) 

i 𝜽 
(°𝑪) 

log i log v 

          

 

Table 1 

 

Qty 
(ml) 

t 
(s) 

v 
(m/s) 

h1 

(mm) 
h2 

(mm) 
h1-h2 
(m) 

i 𝜽 
(°𝑪) 

log i log v 

          

 

Table 2 
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Qty 
(ml) 

t 
(s) 

v 
(m/s) 

h1 

(mm) 
h2 

(mm) 
h1-h2 
(m) 

i 𝜽 
(°𝑪) 

log i log v 

400 
400 
400 
400 
400 
300 
300 
300 
200 
150 
85 
50 

 

50.8 
54.0 
58.8 
61.8 
67.2 
57.8 
71.9 
92.9 
92.4 

100.8 
113.6 
129.4 

1.110 
1.049 
0.961 
0.915 
0.843 
0.734 
0.592 
0.457 
0.306 
0.220 
0.106 
0.055 

521.0 
500.0 
476.0 
452.0 
427.5 
390.0 
375.0 
362.0 
349.0 
340.0 
332.5 
325.0 

56.0 
85.0 

114.0 
145.0 
174.0 
223.0 
245.0 
263.0 
282.0 
295.5 
306.0 
316.0 

0.465 
0.415 
0.362 
0.307 

0.2535 
0.167 
0.130 
0.099 
0.067 
0.455 

0.0265 
0.009 

0.887 
0.794 
0.692 
0.586 
0.483 
0.319 
0.248 
0.189 
0.128 
0.085 
0.050 
0.017 

15.3 
 
 
 
 

15.3 
 
 
 
 

15.3 

-0.0521 
-0.1002 
-0.1599 
-0.2321 
-0.3161 
-0.4962 
-0.6055 
-0.7235 
-0.8928 
-1.0771 
-1.2958 
-1.7645 

0.0453 
0.0208 
-0.0173 
-0.0586 
-0.0742 
-0.1343 
-0.2277 
-0.3401 
-0.5143 
-0.6576 
-0.9747 
-1.2596 

 

Table 1. Results with Water Manometer 

 

Qty 
(ml) 

t 
(s) 

v 
(m/s) 

h1 

(mm) 
h2 

(mm) 
h1-h2 
(m) 

i 𝜽 
(°𝑪) 

log i log v 

900 
900 
900 
900 
900 
900 
900 
600 
600 
600 
300 

39.0 
42.9 
46.6 
51.7 
58.0 
62.7 
68.5 
47.5 
54.6 
70.4 
48.0 

3.27 
2.98 
2.74 
2.47 
2.20 
2.03 
1.86 
1.77 
1.55 
1.19 
0.89 
 

431.0 
414.0 
402.0 
390.0 
377.0 
370.5 
362.0 
358.5 
351.5 
340.0 
331.5 

195.0 
214.0 
226.0 
240.0 
254.5 
261.1 
270.5 
275.0 
283.5 
294.0 
305.5 

0.236 
0.200 
0.176 
0.150 
0.1225 
0.1095 
0.0915 
0.0875 
0.0680 
0.0460 
0.0360 

5.77 
4.81 
4.23 
3.60 
2.94 
2.52 
2.20 
2.01 
1.69 
1.11 
0.87 

 
 
 
15.5 
 
 
 
 
15.9 

0.7612 
0.6821 
0.6263 
0.5563 
0.4683 
0.4014 
0.3426 
0.3052 
0.2146 
0.0434 
-0.0625 

0.5145 
0.4742 
0.4378 
0.3927 
0.3424 
0.3075 
0.2695 
0.2480 
0.1903 
0.0755 
-0.0531 

 

Table 2. Results with Mercury U-tube 
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From Fig 6a, graph of v against i, it can be seen that for small values of v, the frictional loss is 

proportional to velocity. 

 i.e. 𝑖 ∝ 𝑣 

Fig 6b has been drawn with a larger scale for velocities up to 1 m/s. 

This graph shows a fairly distinct change in the slope of the line at C when v is in the region of 

0.77m/s. Up to this point the relationship is given by 

 i = 0.419 v (see section 5.3.1) 

Point C marks the starts of a distinct transition phase where the flow characteristics change 

considerably. 

In Fig.7 the same results are plotted to logarithmic scales. 

Points up to C lie on a straight line of slope 1, confirming the frictional loss is proportional to 

velocity (See also Section 5.3.1) 

For points above C we can write:- 

 𝑖 ∝ 𝑣1.69 for values of v greater than 1.5m/s (See also Section 5.3.2) 
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5.2 Calculations of Critical Reynolds Number 

In Figures 6 and 7, Point C marks the distinct transition phase between laminar and turbulent 

flow. The velocity at Point C is approximately 0.77m/s 

Recalling:- 𝑅 =  
𝜌𝑣𝐷

𝜇
                                        ----2 

Substituting values we get at 15°C: 

                                   𝑅 =  
999𝑋0.77𝑋0.003

11.4𝑋10−4  

                                       = 2024 

 

5.3 Calculation of Relationship between v and i  

5.3.1 Laminar Range 

  𝑖 = 𝑘𝑣𝑛 

therefore, algebraically log i= log k + n log v 

which is an equation of the forth y = mx+b 

from Table 1, for v=306 and .592 (these points on best fit curve) 

𝑛 =  
∆ log 𝑖

∆ log 𝑣
 = 

.6055−(−.8928)

.2277−(−.5143)
 = 

.2873

.2866
 = 1.002 

say n = 1.00 

log k = log i – n log v = -0.6055 – (1.00) (-.2277) = -.3778 

k = .419 

i = .419v1.00 

 

5.3.2 Turbulent Range 

 as  noted above; log i = log k + n log v 

 from Table 2, for  v = 1.55 and 2.47 

𝑛 =  
∆ log 𝑖

∆ log 𝑣
  = 

.5563− .2146

.3927− .1903
 = 

.3417

.2024
 = 1.688 

Say n = 1.69 

log k = log i – n log v = .5563 – 1.69(.3927) = -.1073 

k = 0.781 

i = 0.781 v1.69 
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5.4 Calculation of Coefficient of Viscosity 

In the laminar range; i = 
32𝜇𝑣

𝜌𝑔𝐷2           (Eq. 5), which is an equation of the form y = mx + b 

The slope of the plot is therefore = 
32𝜇

𝜌𝑔𝐷2         Where slope = k = 0.419 (Section 5.3.1) 

This can be rewritten in the form 

 𝜇 = 𝑘
𝜌𝑔𝐷2

32
 

Substituting values we get 

               𝜇 = 𝑘 
𝜌𝑔𝐷2

32
 

Substituting values we get 

𝜇 =  
0.419𝑥999𝑥9.81𝑥9𝑥10−6

32
 

𝜇 =  11.6 𝑥 10−4 N.s/m2 

 

5.5 Calculation of Friction Factor 

In the turbulent region            𝑖 =  
4𝑓𝑣2

𝐷2𝑔
                        ------6 
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We can draw up table 3, giving values of f corresponding to various values of v, in the turbulent 

region of flow. 

v(m/s) I 𝒗𝟐

𝟐𝒈𝑫
 

f R 

1.6 
2.2 
2.8 

1.75 
3.00 
4.45 

43.7 
82.2 

132.8 

0.0100 
0.0092 
0.0084 

4260 
5860 
7450 

 

 

Table 3 Calculation of the Friction Factor f in Darcy’s Equation 

6. DISCUSSION OF RESULTS   

6.1 Measurements of frictional loss alone, the pipe at different velocities have 

shown two well-defined regions to which different laws of resistance apply. As 

the velocity is decreased from 3.3 to 1.5 m/s, frictional loss varied as v169. 

Between 1.5 and 0.77, the loss decreased rather more steeply and as v decreased 

from 0.77 to zero, the loss varied directly as v. The critical velocity of 0.77 

corresponds to a Reynolds number of 2024, this value being close to the figure of 

about 2000 at which transition from turbulent to laminar flow is usually found to 

take place.  

6.2 The value of 𝜇 calculated by Poiseuille's equation applied to the results in the 

laminar region is  

𝜇 = 11. 6 x 10-4 Ns/m at 15.3°C.  

The accepted value at this temperature is  

𝜇 =11.4 x 10-4 Ns/m2  

Since the accepted values are based on experiments with similar but more refined 

apparatus, the discrepance reveals an error of about 2% in the apparatus used 

here.  

6.3 The results in the turbulent region have been used to calculate the friction 

factor f in Darcy's equation, and are found to fall with increasing v as shown in 

Table 4. 

 


